masahi commented on a change in pull request #4741: [External codegen] Add test 
cases for fused ops with manual annotation
URL: https://github.com/apache/incubator-tvm/pull/4741#discussion_r368367461
 
 

 ##########
 File path: src/relay/backend/contrib/dnnl/codegen.cc
 ##########
 @@ -50,82 +51,109 @@ class CodegenDNNL : public ExprVisitor, public 
CodegenCBase {
     out_.push_back({node->name_hint(), 0});
   }
 
-  void VisitExpr_(const TupleGetItemNode* op) final {
-    // Do nothing
-  }
-
   void VisitExpr_(const CallNode* call) final {
-    std::ostringstream decl_stream;
-    std::ostringstream buf_stream;
-    // Args: ID
-    std::vector<std::string> args;
+    struct Output {
+      std::string decl, buf;
+      int out_size = 1;
+      std::string out;
+    };
+
+    auto generate_body = [=](const CallNode* root_call, const std::string& 
func_name,
+                             const std::vector<std::string>& args,
+                             const std::vector<std::string>& fused_func_args) {
+      // Make function call with input buffers when visiting arguments
+      bool first = true;
+      std::ostringstream arg_stream;
+      arg_stream << "(";
+      for (size_t i = 0; i < root_call->args.size(); ++i) {
+        VisitExpr(root_call->args[i]);
+        for (auto out : out_) {
+          if (!first) {
+            arg_stream << ", ";
+          }
+          first = false;
+          arg_stream << out.first;
+        }
+      }
+
+      for (auto arg_name : fused_func_args) {
+        arg_stream << ", " << arg_name;
+      }
+
+      // Analyze the output buffer
+      auto type_node = root_call->checked_type().as<TensorTypeNode>();
+      CHECK(type_node != nullptr && runtime::TypeMatch(type_node->dtype, 
kDLFloat, 32))
+          << "Only support single output tensor with float type";
+
+      auto out_shape = GetShape(root_call->checked_type());
+
+      Output ret;
+      ret.out = "buf_" + std::to_string(buf_idx_++);
+      ret.out_size = std::accumulate(out_shape.begin(), out_shape.end(), 1, 
std::multiplies<int>());
+
+      this->PrintIndents();
+
+      std::ostringstream buf_stream;
+      buf_stream << "float* " << ret.out << " = (float*)std::malloc(4 * " << 
ret.out_size << ");";
+      ret.buf = buf_stream.str();
 
-    // Get the arguments for various DNNL kernels.
-    if (IsOp(call, "nn.conv2d")) {
-      decl_stream << "dnnl_conv2d";
-      args = Conv2d(call);
+      arg_stream << ", " << ret.out;
+      // Attach attribute arguments
+      for (size_t i = 0; i < args.size(); ++i) {
+        arg_stream << ", " << args[i];
+      }
+      arg_stream << ");";
+      ret.decl = func_name + arg_stream.str();
+
+      return ret;
+    };
+
+    Output ret;
+    if (auto conv_call = DetectFusedConv2DBiasReLU(call)) {
 
 Review comment:
   yeah, this is my minimal effort way to detect only the pattern I care about. 
Will think about how to make it more general.

----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
 
For queries about this service, please contact Infrastructure at:
[email protected]


With regards,
Apache Git Services

Reply via email to