mshr-h commented on issue #17546:
URL: https://github.com/apache/tvm/issues/17546#issuecomment-2540695118
Seems like the torch.nn.Linear converter is the root of the problem.
Minimum repro.
```python
import tvm
import torch
import onnx
from tvm import relay
import os
class LinearModel(torch.nn.Module):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.linear = torch.nn.Linear(in_features=128, out_features=512,
bias=True)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.linear(x)
def main():
target = "llvm"
dummy_input = torch.randn(2, 56, 56, 128)
linear_model = LinearModel()
# torch frontend
trace_model = torch.jit.trace(linear_model, dummy_input).eval()
mod, params = relay.frontend.from_pytorch(trace_model, [("input",
dummy_input.shape)])
with tvm.transform.PassContext(opt_level=3):
lib = relay.build(mod, target, params=params)
lib.export_library("linear_model_torch.so")
# onnx frontend
torch.onnx.export(
linear_model,
dummy_input,
"linear_model_onnx.onnx",
input_names=["input"],
opset_version=13,
)
onnx_model = onnx.load("linear_model_onnx.onnx")
mod, params = relay.frontend.from_onnx(onnx_model, {"input":
dummy_input.shape})
with tvm.transform.PassContext(opt_level=3):
lib = relay.build(mod, target, params=params)
lib.export_library("linear_model_onnx.so")
print("File size")
print(" linear_model_torch.so : ",
os.path.getsize("linear_model_torch.so"))
print(" linear_model_onnx.onnx: ",
os.path.getsize("linear_model_onnx.onnx"))
print(" linear_model_onnx.so : ",
os.path.getsize("linear_model_onnx.so"))
if __name__ == "__main__":
main()
```
--
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
To unsubscribe, e-mail: [email protected]
For queries about this service, please contact Infrastructure at:
[email protected]