syheliel opened a new issue, #17879:
URL: https://github.com/apache/tvm/issues/17879

   ### Environment
   - torch                    1.13.1
   - apache-tvm               0.14.dev273
   
   ### Steps to reproduce
   ```
   import torch
   import tvm
   from tvm import relay
   import torch.nn as nn
   
   class SimpleCNN(nn.Module):
       def __init__(self):
           super(SimpleCNN, self).__init__()
           
           # First convolutional layer
           self.conv1 = nn.Conv2d(in_channels=3, out_channels=32, 
kernel_size=3, padding=1)
           self.relu1 = nn.ReLU()
           self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)
           
           # Second convolutional layer
           self.conv2 = nn.Conv2d(in_channels=32, out_channels=64, 
kernel_size=3, padding=1)
           self.relu2 = nn.ReLU()
           self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)
           
           # Third convolutional layer
           self.conv3 = nn.Conv2d(in_channels=64, out_channels=128, 
kernel_size=3, padding=1)
           self.relu3 = nn.ReLU()
           self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2)
           
           # Fully connected layers
           self.fc1 = nn.Linear(128 * 4 * 4, 512)
           self.relu4 = nn.ReLU()
           self.dropout = nn.Dropout(0.5)
           self.fc2 = nn.Linear(512, 10)  # 10 classes for classification
           
       def forward(self, x):
           # First conv block
           x = self.conv1(x)
           x = self.relu1(x)
           x = self.pool1(x)
           
           # Second conv block
           x = self.conv2(x)
           x = self.relu2(x)
           x = self.pool2(x)
           
           # Third conv block
           x = self.conv3(x)
           x = self.relu3(x)
           x = self.pool3(x)
           
           # Flatten the output
           x = x.view(x.size(0), -1)
           
           # Fully connected layers
           x = self.fc1(x)
           x = self.relu4(x)
           x = self.dropout(x)
           x = self.fc2(x)
           
           return x
   
   # Example usage
   if __name__ == "__main__":
       # Create model instance
       model = SimpleCNN()
       
       # Create a sample input tensor (batch_size=1, channels=3, height=32, 
width=32)
       sample_input = torch.randn(1, 3, 32, 32)
       scripted_model = torch.jit.script(model)
       shape_list = ["sample_input", sample_input.shape]
       mod, params = relay.frontend.from_pytorch(scripted_model, shape_list)
   ```
   


-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: [email protected]

For queries about this service, please contact Infrastructure at:
[email protected]

Reply via email to