coffezhou opened a new issue, #18135:
URL: https://github.com/apache/tvm/issues/18135

   
   ### Expected behavior
   
   TVM should run the model correctly.
   
   ### Actual behavior
   
   For the following model,
   
   <img width="156" height="361" alt="Image" 
src="https://github.com/user-attachments/assets/3408978d-39df-4509-ab3a-590af91dfc1b";
 />
   
   it can be executed by onnxruntime, the results are as follows:
   ```c
   ONNXRuntime:
    [array([[3.2746487 , 2.0243466 , 0.8304557 , 0.55226177],
          [0.48739833, 0.47312835, 0.3515296 , 0.19696969],
          [9.719148  , 7.0277977 , 4.5064907 , 0.13069437]], dtype=float32)]
   ```
   However, the onnx frontend of TVM cannot import it:
   ```c
   File 
"/home/carla/Documents/tvm/python/tvm/relax/frontend/onnx/onnx_frontend.py", 
line 3925, in from_onnx
       return g.from_onnx(graph, opset)
              ^^^^^^^^^^^^^^^^^^^^^^^^^
     File 
"/home/carla/Documents/tvm/python/tvm/relax/frontend/onnx/onnx_frontend.py", 
line 3556, in from_onnx
       self._construct_nodes(graph)
     File 
"/home/carla/Documents/tvm/python/tvm/relax/frontend/onnx/onnx_frontend.py", 
line 3736, in _construct_nodes
       raise err
     File 
"/home/carla/Documents/tvm/python/tvm/relax/frontend/onnx/onnx_frontend.py", 
line 3731, in _construct_nodes
       op = self._convert_operator(op_name, inputs, attr, self.opset)
            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
     File 
"/home/carla/Documents/tvm/python/tvm/relax/frontend/onnx/onnx_frontend.py", 
line 3831, in _convert_operator
       sym = op_function(self.bb, inputs, attrs, [self._nodes, self._params])
             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
     File 
"/home/carla/Documents/tvm/python/tvm/relax/frontend/onnx/onnx_frontend.py", 
line 1343, in _impl_v14
       data = bb.emit_te(topi.flip, data, axis=axis if axis else 0)
              ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
     File "/home/carla/Documents/tvm/python/tvm/relax/block_builder.py", line 
540, in emit_te
       return self.emit(self.call_te(func, *args, **kwargs), 
name_hint=name_hint)
                        ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
     File "/home/carla/Documents/tvm/python/tvm/relax/block_builder.py", line 
356, in call_te
       tir_func, call_args, output_sinfo, tir_vars = gen_call_tir_inputs(func, 
*args, **kwargs)
                                                     
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
     File "/home/carla/Documents/tvm/python/tvm/relax/utils.py", line 351, in 
gen_call_tir_inputs
       te_args = _convert_te_arg(args)
                 ^^^^^^^^^^^^^^^^^^^^^
     File "/home/carla/Documents/tvm/python/tvm/relax/utils.py", line 289, in 
_convert_te_arg
       new_arg = _convert_te_arg_helper(te_args)
                 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
     File "/home/carla/Documents/tvm/python/tvm/relax/utils.py", line 273, in 
_convert_te_arg_helper
       return tuple(_convert_te_arg_helper(x) for x in arg)
              ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
     File "/home/carla/Documents/tvm/python/tvm/relax/utils.py", line 273, in 
<genexpr>
       return tuple(_convert_te_arg_helper(x) for x in arg)
                    ^^^^^^^^^^^^^^^^^^^^^^^^^
     File "/home/carla/Documents/tvm/python/tvm/relax/utils.py", line 223, in 
_convert_te_arg_helper
       if isinstance(arg.struct_info, TensorStructInfo):
                     ^^^^^^^^^^^^^^^
     File "/home/carla/Documents/tvm/python/tvm/ir/expr.py", line 59, in 
struct_info
       return _ffi_api.ExprStructInfo(self)
              ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
     File "tvm/ffi/cython/./function.pxi", line 228, in 
tvm.ffi.core.Function.__call__
   tvm.error.InternalError: Check failed: (ptr) is false: The struct_info is 
not populated, check if you have normalized the expr
   ```
   
   ### Environment
   
   OS: Ubuntu 20.04
   TVM: 0.22.dev0 (c6969d723)
   onnxruntime: 1.21.0
   
   ### Steps to reproduce
   
   This bug can be reproduced by the following code with the model in the 
attachment. As shown in the code, the model can be executed by onnxruntime. 
However, TVM cannot import this model.
   ```python
   import sys
   
   import numpy as np
   import onnx
   import onnxruntime
   
   import tvm
   from tvm import relax
   from tvm.relax.frontend.onnx import from_onnx
   
   import pickle
   
               
   def main():
       onnx_model = onnx.load("111.onnx")
       
       with open("inputs.pkl", "rb") as fp:
           inputs = pickle.load(fp)
   
       try:
           ort_session = onnxruntime.InferenceSession(
               onnx_model.SerializeToString(), 
providers=["CPUExecutionProvider"]
           )
           ort_output = ort_session.run([], inputs)
       except Exception as e:
           print(e)
           sys.exit(1)
           
       print("ONNXRuntime:\n", ort_output)   
   
       # Convert the onnx model into relax through the onnx importer.
       tvm_model = from_onnx(onnx_model, keep_params_in_input=True)
       
   
       
   if __name__ == "__main__":
       
       main()
   
   ```
   
   
[testcase.zip](https://github.com/user-attachments/files/21183919/testcase.zip)
   
   ### Triage
   
   Please refer to the list of label tags 
[here](https://github.com/apache/tvm/wiki/Issue-Triage-Labels) to find the 
relevant tags and add them below in a bullet format (example below).
   
   * needs-triage
   


-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: [email protected]

For queries about this service, please contact Infrastructure at:
[email protected]

Reply via email to