FredJia-intellif commented on code in PR #18027:
URL: https://github.com/apache/tvm/pull/18027#discussion_r2227231750
##########
src/tir/transforms/dtype_conversion.h:
##########
@@ -121,12 +122,43 @@ class FloatConfig {
// NVIDIA/Arm/Intel's FP8 formats for Deep Learning
// Reference: https://arxiv.org/abs/2209.05433
switch (dtype.code()) {
+ case DataType::kFloat8_e3m4:
+ // E3M4 format, not consistent with IEEE-754
+ return FloatConfig(3, 4, 3, InftyStyle::kNone, NaNStyle::kAllOnes);
+ case DataType::kFloat8_e4m3:
+ // E4M3 format, not consistent with IEEE-754
+ return FloatConfig(4, 3, 7, InftyStyle::kNone, NaNStyle::kAllOnes);
+ case DataType::kFloat8_e4m3b11fnuz:
+ // E4M3 variant with b11 encoding, not consistent with IEEE-754
+ return FloatConfig(4, 3, 7, InftyStyle::kNone, NaNStyle::kAllOnes);
case DataType::kFloat8_e4m3fn:
// E4M3 format, not consistent with IEEE-754
return FloatConfig(4, 3, 7, InftyStyle::kNone, NaNStyle::kAllOnes);
- default:
- // E5M2 format, consistent with IEEE-754
+ case DataType::kFloat8_e4m3fnuz:
+ // UE4M3 format, not consistent with IEEE-754
+ return FloatConfig(4, 3, 7, InftyStyle::kNone, NaNStyle::kAllOnes);
Review Comment:
@Kathryn-cat , hi, why are the FloatConfig of e4m3, e4m3b11fnuz, e4m3fn and
e4m3fnuz exactly the same?
--
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
To unsubscribe, e-mail: [email protected]
For queries about this service, please contact Infrastructure at:
[email protected]