Cookiee235 opened a new issue, #18424:
URL: https://github.com/apache/tvm/issues/18424

   When running meta_schedule.tune_tir on a valid TIR module involving 
multi-dimensional access patterns, TVM crashes during the schedule rewriting 
phase (RewriteParallelVectorizeUnroll). 
   
   
   
   ### Actual behavior
   ```
   Traceback (most recent call last):
     File 
"/share_container/LLMFuzz/TirFuzz/bugs/10-24_20-21/topi.gather_0_M1.py", line 
32, in <module>
       database = ms.tir_integration.tune_tir(mod=tir_mod, target='llvm 
--num-cores=32', work_dir='./tune_tmp', max_trials_global=1, 
num_trials_per_iter=1)
                  
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
     File "test", line 146, in tune_tir
       return tune_tasks(
              ^^^^^^^^^^^
     File "/software/tvm-latest/python/tvm/meta_schedule/tune.py", line 122, in 
tune_tasks
       task_scheduler.tune(
     File 
"/software/tvm-latest/python/tvm/meta_schedule/task_scheduler/task_scheduler.py",
 line 132, in tune
       _ffi_api.TaskSchedulerTune(  # type: ignore # pylint: disable=no-member
     File "python/tvm_ffi/cython/function.pxi", line 758, in 
core.Function.__call__
     File "<unknown>", line 0, in 
tvm::meta_schedule::GradientBasedNode::Tune(tvm::ffi::Array<tvm::meta_schedule::TuneContext,
 void>, tvm::ffi::Array<tvm::FloatImm, void>, int, int, int, 
tvm::meta_schedule::Builder, tvm::meta_schedule::Runner, 
tvm::ffi::Array<tvm::meta_schedule::MeasureCallback, void>, 
tvm::ffi::Optional<tvm::meta_schedule::Database, void>, 
tvm::ffi::Optional<tvm::meta_schedule::CostModel, void>)
     File "<unknown>", line 0, in 
tvm::meta_schedule::TaskSchedulerNode::Tune(tvm::ffi::Array<tvm::meta_schedule::TuneContext,
 void>, tvm::ffi::Array<tvm::FloatImm, void>, int, int, int, 
tvm::meta_schedule::Builder, tvm::meta_schedule::Runner, 
tvm::ffi::Array<tvm::meta_schedule::MeasureCallback, void>, 
tvm::ffi::Optional<tvm::meta_schedule::Database, void>, 
tvm::ffi::Optional<tvm::meta_schedule::CostModel, void>)
     File "<unknown>", line 0, in 
tvm::meta_schedule::EvolutionarySearchNode::GenerateMeasureCandidates()
     File "<unknown>", line 0, in 
tvm::meta_schedule::EvolutionarySearchNode::State::GenerateMeasureCandidates()
     File "<unknown>", line 0, in 
tvm::meta_schedule::EvolutionarySearchNode::State::SampleInitPopulation(int)
     File "<unknown>", line 0, in tvm::support::parallel_for_dynamic(int, int, 
int, std::function<void (int, int)> const&) [clone .cold]
     File "<unknown>", line 0, in tvm::runtime::detail::LogFatal::~LogFatal() 
[clone .constprop.0]
     File "<unknown>", line 0, in 
tvm::runtime::detail::LogFatal::Entry::Finalize()
   RuntimeError: parallel_for_dynamic error with Traceback (most recent call 
last):
     File "<unknown>", line 0, in 
tvm::meta_schedule::GradientBasedNode::Tune(tvm::ffi::Array<tvm::meta_schedule::TuneContext,
 void>, tvm::ffi::Array<tvm::FloatImm, void>, int, int, int, 
tvm::meta_schedule::Builder, tvm::meta_schedule::Runner, 
tvm::ffi::Array<tvm::meta_schedule::MeasureCallback, void>, 
tvm::ffi::Optional<tvm::meta_schedule::Database, void>, 
tvm::ffi::Optional<tvm::meta_schedule::CostModel, void>)
     File "<unknown>", line 0, in 
tvm::meta_schedule::TaskSchedulerNode::Tune(tvm::ffi::Array<tvm::meta_schedule::TuneContext,
 void>, tvm::ffi::Array<tvm::FloatImm, void>, int, int, int, 
tvm::meta_schedule::Builder, tvm::meta_schedule::Runner, 
tvm::ffi::Array<tvm::meta_schedule::MeasureCallback, void>, 
tvm::ffi::Optional<tvm::meta_schedule::Database, void>, 
tvm::ffi::Optional<tvm::meta_schedule::CostModel, void>)
     File "<unknown>", line 0, in 
tvm::meta_schedule::EvolutionarySearchNode::GenerateMeasureCandidates()
     File "<unknown>", line 0, in 
tvm::meta_schedule::EvolutionarySearchNode::State::GenerateMeasureCandidates()
     File "<unknown>", line 0, in 
tvm::meta_schedule::EvolutionarySearchNode::State::SampleInitPopulation(int)
     File "<unknown>", line 0, in tvm::support::parallel_for_dynamic(int, int, 
int, std::function<void (int, int)> const&)
     File "<unknown>", line 0, in 
tvm::meta_schedule::EvolutionarySearchNode::State::SampleInitPopulation(int)::{lambda(int,
 int)#1}::operator()(int, int) const
     File "<unknown>", line 0, in 
tvm::meta_schedule::ThreadedTraceApply::Apply(tvm::IRModule const&, 
tvm::tir::Trace const&, long*)
     File "<unknown>", line 0, in 
tvm::meta_schedule::RewriteParallelVectorizeUnrollNode::Apply(tvm::tir::Schedule
 const&)
     File "<unknown>", line 0, in 
tvm::tir::RewriteFuseSplitParallelVectorize(tvm::tir::Schedule const&, 
tvm::ffi::Array<tvm::tir::LoopRV, void>*, int)
     File "<unknown>", line 0, in 
tvm::tir::TracedScheduleNode::Parallel(tvm::tir::LoopRV const&)
     File "/software/tvm-latest/src/tir/schedule/concrete_schedule.cc", line 
630, in virtual void tvm::tir::ConcreteScheduleNode::Parallel(const 
tvm::tir::LoopRV&)
   ScheduleError: (not rendered)
   
   ```
   ### Environment
   
   tvm: 0.23.dev0
   
   ### Steps to reproduce
   
   ```
   import tvm
   from tvm import te, topi, tir
   from tvm import meta_schedule as ms
   
   tir_str = """# from tvm.script import ir as I
   # from tvm.script import tir as T
   
   @I.ir_module
   class Module:
       @T.prim_func
       def main(data: T.Buffer((4, 6, 8), "float32"), indices: T.Buffer((2, 6, 
8), "int32"), T_gather: T.Buffer((2, 6, 8), "float32")):
           T.func_attr({"target": T.target({"keys": ["cpu"], "kind": "llvm", 
"mtriple": "x86_64-unknown-linux-gnu", "tag": ""}), "tir.noalias": True})
           # with T.block("root"):
           for ax0, ax1, ax2 in T.grid(2, 6, 8):
               with T.block("T_gather"):
                   v_ax0, v_ax1, v_ax2 = T.axis.remap("SSS", [ax0, ax1, ax2])
                   T.reads(data[indices[v_ax0, v_ax1, v_ax2], v_ax1, v_ax2], 
indices[v_ax0, v_ax1, v_ax2])
                   T.writes(T_gather[v_ax0, v_ax1, v_ax2])
                   T_gather[v_ax0, v_ax1, v_ax2] = data[indices[v_ax0, v_ax1, 
v_ax2], v_ax1, v_ax2]
           
           # Add additional multi-dimensional access to trigger StorageFlatten
           for ax0, ax1, ax2 in T.grid(4, 6, 8):
               with T.block("additional_access"):
                   v_ax0, v_ax1, v_ax2 = T.axis.remap("SSS", [ax0, ax1, ax2])
                   T.reads(data[v_ax0, v_ax1, v_ax2])
                   T.writes(data[v_ax0, v_ax1, v_ax2])
                   data[v_ax0, v_ax1, v_ax2] = data[v_ax0, v_ax1, v_ax2] + 
T.float32(1.0)
   """
   
   tir_mod = tvm.script.from_source(tir_str)
   tir_mod.show()
   database = ms.tir_integration.tune_tir(mod=tir_mod, target='llvm 
--num-cores=32', work_dir='./tune_tmp', max_trials_global=1, 
num_trials_per_iter=1)
   ```
   
   ### Triage
   
   * needs-triage
   * meta-tune
   


-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: [email protected]

For queries about this service, please contact Infrastructure at:
[email protected]

Reply via email to