yzhliu commented on a change in pull request #5618:
URL: https://github.com/apache/incubator-tvm/pull/5618#discussion_r446359570



##########
File path: tests/python/unittest/test_arith_solve_linear_inequality.py
##########
@@ -0,0 +1,187 @@
+# Licensed to the Apache Software Foundation (ASF) under one
+# or more contributor license agreements.  See the NOTICE file
+# distributed with this work for additional information
+# regarding copyright ownership.  The ASF licenses this file
+# to you under the Apache License, Version 2.0 (the
+# "License"); you may not use this file except in compliance
+# with the License.  You may obtain a copy of the License at
+#
+#   http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing,
+# software distributed under the License is distributed on an
+# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+# KIND, either express or implied.  See the License for the
+# specific language governing permissions and limitations
+# under the License.
+import random
+import sys
+import pytest
+import tvm
+from tvm import te, arith, ir, tir, testing
+
+
+def test_solution_consistency():
+    seed = random.randrange(sys.maxsize)
+    print("\nThis test is intentionally non-deterministic, "
+          "if it fails please report it in github issue together with this 
seed {}\n".format(seed))
+    random.seed(seed)
+
+    def _check(variables, formulas, coef=(-5, 5), bounds=(-20, 20)):
+        vs = [te.var("x" + str(i)) for i in range(variables)]
+
+        fs = []
+        for i in range(formulas):
+            s1 = sum([v*random.randint(coef[0], coef[1]) for v in vs])
+            s1 += random.randint(coef[0], coef[1])
+            s2 = sum([v*random.randint(coef[0], coef[1]) for v in vs])
+            s2 += random.randint(coef[0], coef[1])
+            op = random.choice([tir.expr.EQ, tir.expr.LE, tir.expr.LT, 
tir.expr.GE, tir.expr.GT])
+            fs.append(op(s1, s2))
+
+        vranges = {v: tvm.ir.expr.Range(bounds[0], bounds[1] + 1) for v in vs}
+        before = te.all(tir.const(1, 'bool'), *fs)
+        after = arith._ffi_api.SolveInequalitiesAsCondition(vs, vranges, fs)
+        after = te.all(tir.const(1, 'bool'), *after)
+        testing.check_bool_expr_is_true(before == after, vranges)
+
+        solution = arith.solve_linear_inequalities(fs, vs, vranges, 
deskew_range=True)
+        testing.check_int_constraints_trans_consistency(solution)
+
+    for i in range(3):
+        _check(1, 1)
+    for i in range(3):
+        _check(1, 2)
+
+    for i in range(3):
+        _check(2, 1)
+    for i in range(3):
+        _check(2, 2)
+    for i in range(3):
+        _check(2, 3)
+
+    # Somewhere here coefficients in the results become too large, leading to 
overflow,
+    # so we use smaller initial coefficients
+    for i in range(5):
+        _check(3, 3, coef=(-2, 2))
+    for i in range(5):
+        _check(3, 4, coef=(-2, 2))
+
+    for i in range(5):
+        _check(4, 3, coef=(-1, 1))
+
+    for i in range(5):
+        _check(10, 2, coef=(-1, 1), bounds=(0, 4))
+    for i in range(5):
+        _check(10, 3, coef=(0, 1), bounds=(0, 4))
+
+
+def test_dual_variable():
+    x, y = te.var("x"), te.var("y")
+
+    variables = [x, y]
+    ranges = {
+        x: tvm.ir.Range(-100, 100),
+        y: tvm.ir.Range(0, 10),
+    }
+    problem = [
+        tvm.tir.LE(x + y, 20),
+        tvm.tir.GE(x - y, 10),
+    ]
+
+    # solution as conditions
+    solution = arith._ffi_api.SolveInequalitiesAsCondition(variables, ranges, 
problem)
+    assert ir.structural_equal(solution[0], x >= (y + 10))
+    assert ir.structural_equal(solution[1], x <= (20 - y))
+    assert ir.structural_equal(solution[2], y >= 0)
+    assert ir.structural_equal(solution[3], y <= 5)
+
+    # solve and get the ranges
+    solution = arith.solve_linear_inequalities([
+        tvm.tir.LE(x + y, 20),
+        tvm.tir.GE(x - y, 10),
+    ], [x, y], ranges)
+    # 0 <= y <=5
+    assert solution.ranges[y].min == 0
+    assert solution.ranges[y].extent == 6
+    # y + 10 <= x <= 20 - y
+    assert ir.structural_equal(solution.ranges[x].min, y + 10)
+    assert solution.ranges[x].extent == 11  # max(10 - 2y)
+
+    # deskew the solved ranges to be starting from zero
+    solution = arith.solve_linear_inequalities(problem, variables, ranges, 
deskew_range=True)
+    [x_new, y_new] = solution.dst.variables
+    [rel] = solution.dst.relations
+    assert ir.structural_equal(rel, (y_new*2) + x_new <= 10)
+    assert ir.structural_equal(solution.dst.ranges[x_new].min, 0)
+    assert ir.structural_equal(solution.dst.ranges[x_new].extent, 11)
+    assert ir.structural_equal(solution.dst.ranges[y_new].min, 0)
+    assert ir.structural_equal(solution.dst.ranges[y_new].extent, 6)
+    assert ir.structural_equal(solution.src_to_dst[x], x_new + (y_new + 10))
+    assert ir.structural_equal(solution.src_to_dst[y], y_new)
+    assert ir.structural_equal(solution.dst_to_src[x_new], x - y - 10)
+    assert ir.structural_equal(solution.dst_to_src[y_new], y)
+
+
+def test_equal():
+    x, y = te.var("x"), te.var("y")
+    problem = [
+        tvm.tir.GE(x + y, 10),
+        tvm.tir.GE(x - y, 2),
+        tvm.tir.LE(x, 6),
+    ]
+
+    solution = arith.solve_linear_inequalities(problem, [x, y])
+    assert solution.ranges[x].min == 6
+    assert solution.ranges[x].extent == 1
+    assert solution.ranges[y].min == 4
+    assert solution.ranges[y].extent == 1
+
+    solution = arith.solve_linear_inequalities(problem, [x, y], 
deskew_range=True)
+    assert len(solution.dst.variables) == 0
+    assert len(solution.dst.ranges) == 0
+    assert len(solution.dst.relations) == 0
+    assert solution.src_to_dst[x] == 6
+    assert solution.src_to_dst[y] == 4
+
+
+def test_multi_equal():
+    x, y, z = te.var("x"), te.var("y"), te.var("z")
+    problem = [
+        tvm.tir.LE(x, 6),
+        tvm.tir.GE(x, 6),
+        tvm.tir.GE(x - z * y, 0),
+        tvm.tir.LE(x - z * y, 0),
+    ]
+
+    solution = arith.solve_linear_inequalities(problem, [x, y, z])
+    assert solution.ranges[x].min == 6
+    assert solution.ranges[x].extent == 1
+
+    solution = arith.solve_linear_inequalities(problem, [x, y, z], 
deskew_range=True)
+    assert solution.src_to_dst[y] == y
+    assert solution.src_to_dst[z] == z
+    assert solution.src_to_dst[x] == 6
+
+
+def test_no_solution():
+    x = te.var("x0")
+    vranges = {x: tvm.ir.Range.make_by_min_extent(-20, 41)}
+    problem = [-x - 4 <= -5*x + 2, x*4 + 5 <= x*5]

Review comment:
       more cases are covered in `test_solution_consistency`




----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

For queries about this service, please contact Infrastructure at:
us...@infra.apache.org


Reply via email to