daniperfer commented on issue #7971:
URL: https://github.com/apache/tvm/issues/7971#issuecomment-832759852


   Thanks for answering @masahi.
   I see what you said. I have removed my modifications to the tutorial script, 
back to the original code, and I've launched again the original script 
`tutorials/frontend/deploy_object_detection_pytorch.py`, which uses the 
`TraceWrapper` class.
   
   However, I got a different error this time: **LLVM ERROR: out of memory. 
Aborted (core dumped)**.
   
   Any thoughts on why that error could have happened?
   
   ```
   (my-vitis-ai-pytorch) Vitis-AI ~/tvm > python 
tutorials/frontend/deploy_object_detection_pytorch.py
   
/home/vitis-ai-user/.conda/envs/my-vitis-ai-pytorch/lib/python3.6/site-packages/torch/tensor.py:593:
 RuntimeWarning: Iterating over a tensor might cause the trace to be incorrect. 
Passing a tensor of different shape won't change the number of iterations 
executed (and might lead to errors or silently give incorrect results).
     'incorrect results).', category=RuntimeWarning)
   
/home/vitis-ai-user/.conda/envs/my-vitis-ai-pytorch/lib/python3.6/site-packages/torch/nn/functional.py:3123:
 UserWarning: To copy construct from a tensor, it is recommended to use 
sourceTensor.clone().detach() or 
sourceTensor.clone().detach().requires_grad_(True), rather than 
torch.tensor(sourceTensor).
     dtype=torch.float32)).float())) for i in range(dim)]
   
/home/vitis-ai-user/.conda/envs/my-vitis-ai-pytorch/lib/python3.6/site-packages/torchvision/models/detection/anchor_utils.py:147:
 UserWarning: To copy construct from a tensor, it is recommended to use 
sourceTensor.clone().detach() or 
sourceTensor.clone().detach().requires_grad_(True), rather than 
torch.tensor(sourceTensor).
     torch.tensor(image_size[1] // g[1], dtype=torch.int64, device=device)] for 
g in grid_sizes]
   
/home/vitis-ai-user/.conda/envs/my-vitis-ai-pytorch/lib/python3.6/site-packages/torchvision/ops/boxes.py:128:
 UserWarning: To copy construct from a tensor, it is recommended to use 
sourceTensor.clone().detach() or 
sourceTensor.clone().detach().requires_grad_(True), rather than 
torch.tensor(sourceTensor).
     boxes_x = torch.min(boxes_x, torch.tensor(width, dtype=boxes.dtype, 
device=boxes.device))
   
/home/vitis-ai-user/.conda/envs/my-vitis-ai-pytorch/lib/python3.6/site-packages/torchvision/ops/boxes.py:130:
 UserWarning: To copy construct from a tensor, it is recommended to use 
sourceTensor.clone().detach() or 
sourceTensor.clone().detach().requires_grad_(True), rather than 
torch.tensor(sourceTensor).
     boxes_y = torch.min(boxes_y, torch.tensor(height, dtype=boxes.dtype, 
device=boxes.device))
   
/home/vitis-ai-user/.conda/envs/my-vitis-ai-pytorch/lib/python3.6/site-packages/torchvision/models/detection/transform.py:271:
 UserWarning: To copy construct from a tensor, it is recommended to use 
sourceTensor.clone().detach() or 
sourceTensor.clone().detach().requires_grad_(True), rather than 
torch.tensor(sourceTensor).
     for s, s_orig in zip(new_size, original_size)
   
/home/vitis-ai-user/.conda/envs/my-vitis-ai-pytorch/lib/python3.6/site-packages/torchvision/models/detection/roi_heads.py:372:
 UserWarning: To copy construct from a tensor, it is recommended to use 
sourceTensor.clone().detach() or 
sourceTensor.clone().detach().requires_grad_(True), rather than 
torch.tensor(sourceTensor).
     return torch.tensor(M + 2 * padding).to(torch.float32) / 
torch.tensor(M).to(torch.float32)
   LLVM ERROR: out of memory
   Aborted (core dumped)
   ```


-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

For queries about this service, please contact Infrastructure at:
[email protected]


Reply via email to