AndrewZhaoLuo commented on a change in pull request #8069:
URL: https://github.com/apache/tvm/pull/8069#discussion_r651148846



##########
File path: src/relay/transforms/to_mixed_precision.cc
##########
@@ -0,0 +1,356 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one
+ * or more contributor license agreements.  See the NOTICE file
+ * distributed with this work for additional information
+ * regarding copyright ownership.  The ASF licenses this file
+ * to you under the Apache License, Version 2.0 (the
+ * "License"); you may not use this file except in compliance
+ * with the License.  You may obtain a copy of the License at
+ *
+ *   http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing,
+ * software distributed under the License is distributed on an
+ * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+ * KIND, either express or implied.  See the License for the
+ * specific language governing permissions and limitations
+ * under the License.
+ */
+
+/*!
+ *
+ * \file to_mixed_precision.cc
+ * \brief Automatic mixed precision for relay graphs. i.e. turn a graph into 
fp16 form.
+ */
+#include "to_mixed_precision.h"
+
+#include <tvm/ir/attrs.h>
+#include <tvm/relay/expr_functor.h>
+#include <tvm/relay/transform.h>
+#include <tvm/runtime/object.h>
+
+#include <utility>
+
+#include "pattern_utils.h"
+
+namespace tvm {
+namespace relay {
+
+// A callable which hashes std::pair
+struct pair_hash {
+  template <class T1, class T2>
+  std::size_t operator()(const std::pair<T1, T2>& pair) const {
+    auto h1 = std::hash<T1>()(pair.first);
+    auto h2 = std::hash<T2>()(pair.second);
+
+    // Use boost's combine_hash strategy
+    return h1 ^ (h1 + 0x9e3779b9 + (h2 << 6) + (h2 >> 2));
+  }
+};
+
+// A map of a parent node and a wanted dtype to existing nodes casted to the 
wanted dtype
+using CachedCastNodes = std::unordered_map<std::pair<const ExprNode*, 
DataType>, Expr, pair_hash>;
+
+// A function which maps CallNodes to their initial conversion color
+using ColorFunc = std::function<MixedTypeConversionCategory(const CallNode*)>;
+
+// A function which maps MIXED_PRECISION_ALWAYS CallNodes to wanted 
accumulation and output dtypes
+using OutputDtypeFunc = std::function<MixedPrecisionOpOutDType(const 
CallNode*)>;
+
+class MixedPrecisionPass : public MixedModeMutator {
+ private:
+  CachedCastNodes cast_nodes_cache;
+  const ColorFunc colorer;
+  const OutputDtypeFunc output_dtype_func;
+  const DataType mixed_precision_type;
+
+  Attrs GetNewAttrs(const CallNode* call, const DataType& accumulation_dtype) 
const {
+    /* If the accumulation dtype is in the attributes make a copy and mutate 
the field. */
+    Attrs new_attrs = Attrs(call->attrs);
+    if (new_attrs.get() != nullptr) {
+      // TODO(AndrewZhaoLuo): Figure out a better way to do this
+      // modify output_dtype attributes (accumulation dtypes for ops)
+      if (auto attrs = new_attrs.as<Conv1DAttrs>()) {
+        ModifyAttrsOutputDType(attrs, accumulation_dtype);
+      } else if (auto attrs = new_attrs.as<Conv1DTransposeAttrs>()) {
+        ModifyAttrsOutputDType(attrs, accumulation_dtype);
+      } else if (auto attrs = new_attrs.as<Conv2DAttrs>()) {
+        ModifyAttrsOutputDType(attrs, accumulation_dtype);
+      } else if (auto attrs = new_attrs.as<Conv2DTransposeAttrs>()) {
+        ModifyAttrsOutputDType(attrs, accumulation_dtype);
+      } else if (auto attrs = new_attrs.as<Conv2DWinogradAttrs>()) {
+        ModifyAttrsOutputDType(attrs, accumulation_dtype);
+      } else if (auto attrs = 
new_attrs.as<Conv2DWinogradNNPACKWeightTransformAttrs>()) {
+        ModifyAttrsOutputDType(attrs, accumulation_dtype);
+      } else if (auto attrs = new_attrs.as<DeformableConv2DAttrs>()) {
+        ModifyAttrsOutputDType(attrs, accumulation_dtype);
+      } else if (auto attrs = new_attrs.as<Conv3DAttrs>()) {
+        ModifyAttrsOutputDType(attrs, accumulation_dtype);
+      } else if (auto attrs = new_attrs.as<Conv3DTransposeAttrs>()) {
+        ModifyAttrsOutputDType(attrs, accumulation_dtype);
+      } else if (auto attrs = new_attrs.as<Conv3DWinogradAttrs>()) {
+        ModifyAttrsOutputDType(attrs, accumulation_dtype);
+      } else if (auto attrs = new_attrs.as<DenseAttrs>()) {
+        ModifyAttrsOutputDType(attrs, accumulation_dtype);
+      } else if (auto attrs = new_attrs.as<BatchMatmulAttrs>()) {
+        ModifyAttrsOutputDType(attrs, accumulation_dtype);
+      }
+
+      // modify dtype attributes (creating new tensors of type dtype)
+      if (auto attrs = new_attrs.as<InitOpAttrs>()) {
+        ModifyAttrsDType(attrs, accumulation_dtype);
+      }
+    }
+
+    return new_attrs;
+  }
+
+  template <typename T>
+  void ModifyAttrsOutputDType(const T* attrs, const DataType& 
accumulation_dtype) const {
+    /*
+     Helper template to modify relevant attributes with out_dtype type.
+     These represent accumulation dtypes for some operations e.g.
+     conv2d might take in fp16 and give a fp32 result.
+     Attrs is const because we get it as a const.
+     */
+    T* mutable_attrs = const_cast<T*>(attrs);
+
+    DataType cur_type = (mutable_attrs->out_dtype);
+    if (cur_type.is_float() || cur_type.is_void()) mutable_attrs->out_dtype = 
accumulation_dtype;
+  }
+
+  template <typename T>
+  void ModifyAttrsDType(const T* attrs, const DataType& accumulation_dtype) 
const {
+    /*
+     Helper template to modify relevant attributes with dtype type.
+     This determines the output dtype for some ops. For example
+     zeros creates a tensor of zeros of the specified dtype.
+     Attrs is const because we get it as a const.
+    */
+    T* mutable_attrs = const_cast<T*>(attrs);
+    DataType cur_type = (mutable_attrs->dtype);
+
+    if (cur_type.is_float() || cur_type.is_void()) mutable_attrs->dtype = 
accumulation_dtype;
+  }
+
+  Type GetType(const Expr& expr) const {
+    auto mod = IRModule::FromExpr(expr);
+    mod = transform::InferType()(mod);
+
+    if (expr.as<FunctionNode>()) {
+      return mod->Lookup("main")->checked_type();
+    } else {
+      return mod->Lookup("main").as<FunctionNode>()->body->checked_type();
+    }
+  }
+
+  bool IsMixedPrecisionType(const Type& t, bool ignore_non_float = false) 
const {
+    /* Returns whether t is a type with only target mixed precision type 
elements.
+       If ignore_non_float, then ignore non-floating types.
+     */
+    if (const TensorTypeNode* tensor_type = t.as<TensorTypeNode>()) {
+      return (!ignore_non_float || (tensor_type->dtype).is_float()) &&
+             tensor_type->dtype == mixed_precision_type;
+    } else if (const TupleTypeNode* tuple_type = t.as<TupleTypeNode>()) {
+      for (Type t : tuple_type->fields) {
+        if (!IsMixedPrecisionType(t, ignore_non_float)) return false;
+      }
+      return true;
+    } else {
+      LOG(FATAL) << "Unsupported type " << t << " we don't know how to handle";
+      return false;
+    }
+  }
+
+  Expr CachedCast(const Expr& expr, const DataType& expr_dtype, const 
DataType& wanted_dtype) {
+    /* Cast tensor to the wanted datatype, returning a cached version if it's 
already been done. */
+
+    // If this is not a floating point type, do not cast. E.g. it might be an 
integer
+    if (!expr_dtype.is_float()) {
+      return expr;
+    }
+
+    const ExprNode* expr_node = expr.as<ExprNode>();
+    if (!expr_node) {
+      LOG(FATAL) << "Non-expression node found in cast: " << expr;
+    }
+
+    // Use cached result if possible.
+    auto search = cast_nodes_cache.find({expr_node, wanted_dtype});
+    if (search != cast_nodes_cache.end()) {
+      return search->second;
+    }
+
+    Expr result = expr_dtype == wanted_dtype ? expr : Cast(expr, wanted_dtype);
+    cast_nodes_cache[{expr_node, wanted_dtype}] = result;

Review comment:
       1. Right now that is what functionally happens with this line 
   `Expr result = expr_dtype == wanted_dtype ? expr : Cast(expr, 
wanted_dtype);` 
   
   It still creates a cache entry though so I reorganized it to be clearer and 
not insert into the cache when `expr_dtype == wanted_dtype`
   
   2. Hmm I believe creating the op lazily will not have any benefit. This is 
because there aren't any useless casts e.g. refer to 1.
   
   The idea of having another pass handle back to back casts is appealing as 
the tool can be used in many other situations. The main concern I have is about 
correctness, e.g. does it handle weird edge cases well? I'll take a closer look 
at the existing PR and think a little more about this.
   
   I do agree that this is a better direction to go however and will refactor 
the pass when a sufficiently correct cast-folding pass exists and is checked 
into main.




-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

For queries about this service, please contact Infrastructure at:
[email protected]


Reply via email to