Modified: vcl/trunk/web/.ht-inc/phpseclib/Math/BigInteger.php
URL: 
http://svn.apache.org/viewvc/vcl/trunk/web/.ht-inc/phpseclib/Math/BigInteger.php?rev=1796097&r1=1796096&r2=1796097&view=diff
==============================================================================
--- vcl/trunk/web/.ht-inc/phpseclib/Math/BigInteger.php (original)
+++ vcl/trunk/web/.ht-inc/phpseclib/Math/BigInteger.php Wed May 24 20:28:10 2017
@@ -1,3551 +1,3804 @@
-<?php
-/* vim: set expandtab tabstop=4 shiftwidth=4 softtabstop=4: */
-
-/**
- * Pure-PHP arbitrary precision integer arithmetic library.
- *
- * Supports base-2, base-10, base-16, and base-256 numbers.  Uses the GMP or 
BCMath extensions, if available,
- * and an internal implementation, otherwise.
- *
- * PHP versions 4 and 5
- *
- * {@internal (all DocBlock comments regarding implementation - such as the 
one that follows - refer to the 
- * {@link MATH_BIGINTEGER_MODE_INTERNAL MATH_BIGINTEGER_MODE_INTERNAL} mode)
- *
- * Math_BigInteger uses base-2**26 to perform operations such as 
multiplication and division and
- * base-2**52 (ie. two base 2**26 digits) to perform addition and subtraction. 
 Because the largest possible
- * value when multiplying two base-2**26 numbers together is a base-2**52 
number, double precision floating
- * point numbers - numbers that should be supported on most hardware and whose 
significand is 53 bits - are
- * used.  As a consequence, bitwise operators such as >> and << cannot be 
used, nor can the modulo operator %,
- * which only supports integers.  Although this fact will slow this library 
down, the fact that such a high
- * base is being used should more than compensate.
- *
- * When PHP version 6 is officially released, we'll be able to use 64-bit 
integers.  This should, once again,
- * allow bitwise operators, and will increase the maximum possible base to 
2**31 (or 2**62 for addition /
- * subtraction).
- *
- * Numbers are stored in {@link http://en.wikipedia.org/wiki/Endianness little 
endian} format.  ie.
- * (new Math_BigInteger(pow(2, 26)))->value = array(0, 1)
- *
- * Useful resources are as follows:
- *
- *  - {@link http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf Handbook 
of Applied Cryptography (HAC)}
- *  - {@link http://math.libtomcrypt.com/files/tommath.pdf Multi-Precision 
Math (MPM)}
- *  - Java's BigInteger classes.  See /j2se/src/share/classes/java/math in 
jdk-1_5_0-src-jrl.zip
- *
- * Here's an example of how to use this library:
- * <code>
- * <?php
- *    include('Math/BigInteger.php');
- *
- *    $a = new Math_BigInteger(2);
- *    $b = new Math_BigInteger(3);
- *
- *    $c = $a->add($b);
- *
- *    echo $c->toString(); // outputs 5
- * ?>
- * </code>
- *
- * LICENSE: Permission is hereby granted, free of charge, to any person 
obtaining a copy
- * of this software and associated documentation files (the "Software"), to 
deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- * 
- * The above copyright notice and this permission notice shall be included in
- * all copies or substantial portions of the Software.
- * 
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 
FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
- * THE SOFTWARE.
- *
- * @category   Math
- * @package    Math_BigInteger
- * @author     Jim Wigginton <[email protected]>
- * @copyright  MMVI Jim Wigginton
- * @license    http://www.opensource.org/licenses/mit-license.html  MIT License
- * @version    $Id: BigInteger.php,v 1.33 2010/03/22 22:32:03 terrafrost Exp $
- * @link       http://pear.php.net/package/Math_BigInteger
- */
-
-/**#@+
- * Reduction constants
- *
- * @access private
- * @see Math_BigInteger::_reduce()
- */
-/**
- * @see Math_BigInteger::_montgomery()
- * @see Math_BigInteger::_prepMontgomery()
- */
-define('MATH_BIGINTEGER_MONTGOMERY', 0);
-/**
- * @see Math_BigInteger::_barrett()
- */
-define('MATH_BIGINTEGER_BARRETT', 1);
-/**
- * @see Math_BigInteger::_mod2()
- */
-define('MATH_BIGINTEGER_POWEROF2', 2);
-/**
- * @see Math_BigInteger::_remainder()
- */
-define('MATH_BIGINTEGER_CLASSIC', 3);
-/**
- * @see Math_BigInteger::__clone()
- */
-define('MATH_BIGINTEGER_NONE', 4);
-/**#@-*/
-
-/**#@+
- * Array constants
- *
- * Rather than create a thousands and thousands of new Math_BigInteger objects 
in repeated function calls to add() and
- * multiply() or whatever, we'll just work directly on arrays, taking them in 
as parameters and returning them.
- *
- * @access private
- */
-/**
- * $result[MATH_BIGINTEGER_VALUE] contains the value.
- */
-define('MATH_BIGINTEGER_VALUE', 0);
-/**
- * $result[MATH_BIGINTEGER_SIGN] contains the sign.
- */
-define('MATH_BIGINTEGER_SIGN', 1);
-/**#@-*/
-
-/**#@+
- * @access private
- * @see Math_BigInteger::_montgomery()
- * @see Math_BigInteger::_barrett()
- */
-/**
- * Cache constants
- *
- * $cache[MATH_BIGINTEGER_VARIABLE] tells us whether or not the cached data is 
still valid.
- */
-define('MATH_BIGINTEGER_VARIABLE', 0);
-/**
- * $cache[MATH_BIGINTEGER_DATA] contains the cached data.
- */
-define('MATH_BIGINTEGER_DATA', 1);
-/**#@-*/
-
-/**#@+
- * Mode constants.
- *
- * @access private
- * @see Math_BigInteger::Math_BigInteger()
- */
-/**
- * To use the pure-PHP implementation
- */
-define('MATH_BIGINTEGER_MODE_INTERNAL', 1);
-/**
- * To use the BCMath library
- *
- * (if enabled; otherwise, the internal implementation will be used)
- */
-define('MATH_BIGINTEGER_MODE_BCMATH', 2);
-/**
- * To use the GMP library
- *
- * (if present; otherwise, either the BCMath or the internal implementation 
will be used)
- */
-define('MATH_BIGINTEGER_MODE_GMP', 3);
-/**#@-*/
-
-/**
- * The largest digit that may be used in addition / subtraction
- *
- * (we do pow(2, 52) instead of using 4503599627370496, directly, because some 
PHP installations
- *  will truncate 4503599627370496)
- *
- * @access private
- */
-define('MATH_BIGINTEGER_MAX_DIGIT52', pow(2, 52));
-
-/**
- * Karatsuba Cutoff
- *
- * At what point do we switch between Karatsuba multiplication and schoolbook 
long multiplication?
- *
- * @access private
- */
-define('MATH_BIGINTEGER_KARATSUBA_CUTOFF', 25);
-
-/**
- * Pure-PHP arbitrary precision integer arithmetic library. Supports base-2, 
base-10, base-16, and base-256
- * numbers.
- *
- * @author  Jim Wigginton <[email protected]>
- * @version 1.0.0RC4
- * @access  public
- * @package Math_BigInteger
- */
-class Math_BigInteger {
-    /**
-     * Holds the BigInteger's value.
-     *
-     * @var Array
-     * @access private
-     */
-    var $value;
-
-    /**
-     * Holds the BigInteger's magnitude.
-     *
-     * @var Boolean
-     * @access private
-     */
-    var $is_negative = false;
-
-    /**
-     * Random number generator function
-     *
-     * @see setRandomGenerator()
-     * @access private
-     */
-    var $generator = 'mt_rand';
-
-    /**
-     * Precision
-     *
-     * @see setPrecision()
-     * @access private
-     */
-    var $precision = -1;
-
-    /**
-     * Precision Bitmask
-     *
-     * @see setPrecision()
-     * @access private
-     */
-    var $bitmask = false;
-
-    /**
-     * Mode independant value used for serialization.
-     *
-     * If the bcmath or gmp extensions are installed $this->value will be a 
non-serializable resource, hence the need for 
-     * a variable that'll be serializable regardless of whether or not 
extensions are being used.  Unlike $this->value,
-     * however, $this->hex is only calculated when $this->__sleep() is called.
-     *
-     * @see __sleep()
-     * @see __wakeup()
-     * @var String
-     * @access private
-     */
-    var $hex;
-
-    /**
-     * Converts base-2, base-10, base-16, and binary strings (eg. base-256) to 
BigIntegers.
-     *
-     * If the second parameter - $base - is negative, then it will be assumed 
that the number's are encoded using
-     * two's compliment.  The sole exception to this is -10, which is treated 
the same as 10 is.
-     *
-     * Here's an example:
-     * <code>
-     * <?php
-     *    include('Math/BigInteger.php');
-     *
-     *    $a = new Math_BigInteger('0x32', 16); // 50 in base-16
-     *
-     *    echo $a->toString(); // outputs 50
-     * ?>
-     * </code>
-     *
-     * @param optional $x base-10 number or base-$base number if $base set.
-     * @param optional integer $base
-     * @return Math_BigInteger
-     * @access public
-     */
-    function Math_BigInteger($x = 0, $base = 10)
-    {
-        if ( !defined('MATH_BIGINTEGER_MODE') ) {
-            switch (true) {
-                case extension_loaded('gmp'):
-                    define('MATH_BIGINTEGER_MODE', MATH_BIGINTEGER_MODE_GMP);
-                    break;
-                case extension_loaded('bcmath'):
-                    define('MATH_BIGINTEGER_MODE', 
MATH_BIGINTEGER_MODE_BCMATH);
-                    break;
-                default:
-                    define('MATH_BIGINTEGER_MODE', 
MATH_BIGINTEGER_MODE_INTERNAL);
-            }
-        }
-
-        switch ( MATH_BIGINTEGER_MODE ) {
-            case MATH_BIGINTEGER_MODE_GMP:
-                if (is_resource($x) && get_resource_type($x) == 'GMP integer') 
{
-                    $this->value = $x;
-                    return;
-                }
-                $this->value = gmp_init(0);
-                break;
-            case MATH_BIGINTEGER_MODE_BCMATH:
-                $this->value = '0';
-                break;
-            default:
-                $this->value = array();
-        }
-
-        if (empty($x)) {
-            return;
-        }
-
-        switch ($base) {
-            case -256:
-                if (ord($x[0]) & 0x80) {
-                    $x = ~$x;
-                    $this->is_negative = true;
-                }
-            case  256:
-                switch ( MATH_BIGINTEGER_MODE ) {
-                    case MATH_BIGINTEGER_MODE_GMP:
-                        $sign = $this->is_negative ? '-' : '';
-                        $this->value = gmp_init($sign . '0x' . bin2hex($x));
-                        break;
-                    case MATH_BIGINTEGER_MODE_BCMATH:
-                        // round $len to the nearest 4 (thanks, DavidMJ!)
-                        $len = (strlen($x) + 3) & 0xFFFFFFFC;
-
-                        $x = str_pad($x, $len, chr(0), STR_PAD_LEFT);
-
-                        for ($i = 0; $i < $len; $i+= 4) {
-                            $this->value = bcmul($this->value, '4294967296', 
0); // 4294967296 == 2**32
-                            $this->value = bcadd($this->value, 0x1000000 * 
ord($x[$i]) + ((ord($x[$i + 1]) << 16) | (ord($x[$i + 2]) << 8) | ord($x[$i + 
3])), 0);
-                        }
-
-                        if ($this->is_negative) {
-                            $this->value = '-' . $this->value;
-                        }
-
-                        break;
-                    // converts a base-2**8 (big endian / msb) number to 
base-2**26 (little endian / lsb)
-                    default:
-                        while (strlen($x)) {
-                            $this->value[] = 
$this->_bytes2int($this->_base256_rshift($x, 26));
-                        }
-                }
-
-                if ($this->is_negative) {
-                    if (MATH_BIGINTEGER_MODE != MATH_BIGINTEGER_MODE_INTERNAL) 
{
-                        $this->is_negative = false;
-                    }
-                    $temp = $this->add(new Math_BigInteger('-1'));
-                    $this->value = $temp->value;
-                }
-                break;
-            case  16:
-            case -16:
-                if ($base > 0 && $x[0] == '-') {
-                    $this->is_negative = true;
-                    $x = substr($x, 1);
-                }
-
-                $x = preg_replace('#^(?:0x)?([A-Fa-f0-9]*).*#', '$1', $x);
-
-                $is_negative = false;
-                if ($base < 0 && hexdec($x[0]) >= 8) {
-                    $this->is_negative = $is_negative = true;
-                    $x = bin2hex(~pack('H*', $x));
-                }
-
-                switch ( MATH_BIGINTEGER_MODE ) {
-                    case MATH_BIGINTEGER_MODE_GMP:
-                        $temp = $this->is_negative ? '-0x' . $x : '0x' . $x;
-                        $this->value = gmp_init($temp);
-                        $this->is_negative = false;
-                        break;
-                    case MATH_BIGINTEGER_MODE_BCMATH:
-                        $x = ( strlen($x) & 1 ) ? '0' . $x : $x;
-                        $temp = new Math_BigInteger(pack('H*', $x), 256);
-                        $this->value = $this->is_negative ? '-' . $temp->value 
: $temp->value;
-                        $this->is_negative = false;
-                        break;
-                    default:
-                        $x = ( strlen($x) & 1 ) ? '0' . $x : $x;
-                        $temp = new Math_BigInteger(pack('H*', $x), 256);
-                        $this->value = $temp->value;
-                }
-
-                if ($is_negative) {
-                    $temp = $this->add(new Math_BigInteger('-1'));
-                    $this->value = $temp->value;
-                }
-                break;
-            case  10:
-            case -10:
-                $x = preg_replace('#^(-?[0-9]*).*#', '$1', $x);
-
-                switch ( MATH_BIGINTEGER_MODE ) {
-                    case MATH_BIGINTEGER_MODE_GMP:
-                        $this->value = gmp_init($x);
-                        break;
-                    case MATH_BIGINTEGER_MODE_BCMATH:
-                        // explicitly casting $x to a string is necessary, 
here, since doing $x[0] on -1 yields different
-                        // results then doing it on '-1' does (modInverse does 
$x[0])
-                        $this->value = (string) $x;
-                        break;
-                    default:
-                        $temp = new Math_BigInteger();
-
-                        // array(10000000) is 10**7 in base-2**26.  10**7 is 
the closest to 2**26 we can get without passing it.
-                        $multiplier = new Math_BigInteger();
-                        $multiplier->value = array(10000000);
-
-                        if ($x[0] == '-') {
-                            $this->is_negative = true;
-                            $x = substr($x, 1);
-                        }
-
-                        $x = str_pad($x, strlen($x) + (6 * strlen($x)) % 7, 0, 
STR_PAD_LEFT);
-
-                        while (strlen($x)) {
-                            $temp = $temp->multiply($multiplier);
-                            $temp = $temp->add(new 
Math_BigInteger($this->_int2bytes(substr($x, 0, 7)), 256));
-                            $x = substr($x, 7);
-                        }
-
-                        $this->value = $temp->value;
-                }
-                break;
-            case  2: // base-2 support originally implemented by Lluis Pamies 
- thanks!
-            case -2:
-                if ($base > 0 && $x[0] == '-') {
-                    $this->is_negative = true;
-                    $x = substr($x, 1);
-                }
-
-                $x = preg_replace('#^([01]*).*#', '$1', $x);
-                $x = str_pad($x, strlen($x) + (3 * strlen($x)) % 4, 0, 
STR_PAD_LEFT);
-
-                $str = '0x';
-                while (strlen($x)) {
-                    $part = substr($x, 0, 4);
-                    $str.= dechex(bindec($part));
-                    $x = substr($x, 4);
-                }
-
-                if ($this->is_negative) {
-                    $str = '-' . $str;
-                }
-
-                $temp = new Math_BigInteger($str, 8 * $base); // ie. either 
-16 or +16
-                $this->value = $temp->value;
-                $this->is_negative = $temp->is_negative;
-
-                break;
-            default:
-                // base not supported, so we'll let $this == 0
-        }
-    }
-
-    /**
-     * Converts a BigInteger to a byte string (eg. base-256).
-     *
-     * Negative numbers are saved as positive numbers, unless $twos_compliment 
is set to true, at which point, they're
-     * saved as two's compliment.
-     *
-     * Here's an example:
-     * <code>
-     * <?php
-     *    include('Math/BigInteger.php');
-     *
-     *    $a = new Math_BigInteger('65');
-     *
-     *    echo $a->toBytes(); // outputs chr(65)
-     * ?>
-     * </code>
-     *
-     * @param Boolean $twos_compliment
-     * @return String
-     * @access public
-     * @internal Converts a base-2**26 number to base-2**8
-     */
-    function toBytes($twos_compliment = false)
-    {
-        if ($twos_compliment) {
-            $comparison = $this->compare(new Math_BigInteger());
-            if ($comparison == 0) {
-                return $this->precision > 0 ? str_repeat(chr(0), 
($this->precision + 1) >> 3) : '';
-            }
-
-            $temp = $comparison < 0 ? $this->add(new Math_BigInteger(1)) : 
$this->copy();
-            $bytes = $temp->toBytes();
-
-            if (empty($bytes)) { // eg. if the number we're trying to convert 
is -1
-                $bytes = chr(0);
-            }
-
-            if (ord($bytes[0]) & 0x80) {
-                $bytes = chr(0) . $bytes;
-            }
-
-            return $comparison < 0 ? ~$bytes : $bytes;
-        }
-
-        switch ( MATH_BIGINTEGER_MODE ) {
-            case MATH_BIGINTEGER_MODE_GMP:
-                if (gmp_cmp($this->value, gmp_init(0)) == 0) {
-                    return $this->precision > 0 ? str_repeat(chr(0), 
($this->precision + 1) >> 3) : '';
-                }
-
-                $temp = gmp_strval(gmp_abs($this->value), 16);
-                $temp = ( strlen($temp) & 1 ) ? '0' . $temp : $temp;
-                $temp = pack('H*', $temp);
-
-                return $this->precision > 0 ?
-                    substr(str_pad($temp, $this->precision >> 3, chr(0), 
STR_PAD_LEFT), -($this->precision >> 3)) :
-                    ltrim($temp, chr(0));
-            case MATH_BIGINTEGER_MODE_BCMATH:
-                if ($this->value === '0') {
-                    return $this->precision > 0 ? str_repeat(chr(0), 
($this->precision + 1) >> 3) : '';
-                }
-
-                $value = '';
-                $current = $this->value;
-
-                if ($current[0] == '-') {
-                    $current = substr($current, 1);
-                }
-
-                while (bccomp($current, '0', 0) > 0) {
-                    $temp = bcmod($current, '16777216');
-                    $value = chr($temp >> 16) . chr($temp >> 8) . chr($temp) . 
$value;
-                    $current = bcdiv($current, '16777216', 0);
-                }
-
-                return $this->precision > 0 ?
-                    substr(str_pad($value, $this->precision >> 3, chr(0), 
STR_PAD_LEFT), -($this->precision >> 3)) :
-                    ltrim($value, chr(0));
-        }
-
-        if (!count($this->value)) {
-            return $this->precision > 0 ? str_repeat(chr(0), ($this->precision 
+ 1) >> 3) : '';
-        }
-        $result = $this->_int2bytes($this->value[count($this->value) - 1]);
-
-        $temp = $this->copy();
-
-        for ($i = count($temp->value) - 2; $i >= 0; --$i) {
-            $temp->_base256_lshift($result, 26);
-            $result = $result | str_pad($temp->_int2bytes($temp->value[$i]), 
strlen($result), chr(0), STR_PAD_LEFT);
-        }
-
-        return $this->precision > 0 ?
-            str_pad(substr($result, -(($this->precision + 7) >> 3)), 
($this->precision + 7) >> 3, chr(0), STR_PAD_LEFT) :
-            $result;
-    }
-
-    /**
-     * Converts a BigInteger to a hex string (eg. base-16)).
-     *
-     * Negative numbers are saved as positive numbers, unless $twos_compliment 
is set to true, at which point, they're
-     * saved as two's compliment.
-     *
-     * Here's an example:
-     * <code>
-     * <?php
-     *    include('Math/BigInteger.php');
-     *
-     *    $a = new Math_BigInteger('65');
-     *
-     *    echo $a->toHex(); // outputs '41'
-     * ?>
-     * </code>
-     *
-     * @param Boolean $twos_compliment
-     * @return String
-     * @access public
-     * @internal Converts a base-2**26 number to base-2**8
-     */
-    function toHex($twos_compliment = false)
-    {
-        return bin2hex($this->toBytes($twos_compliment));
-    }
-
-    /**
-     * Converts a BigInteger to a bit string (eg. base-2).
-     *
-     * Negative numbers are saved as positive numbers, unless $twos_compliment 
is set to true, at which point, they're
-     * saved as two's compliment.
-     *
-     * Here's an example:
-     * <code>
-     * <?php
-     *    include('Math/BigInteger.php');
-     *
-     *    $a = new Math_BigInteger('65');
-     *
-     *    echo $a->toBits(); // outputs '1000001'
-     * ?>
-     * </code>
-     *
-     * @param Boolean $twos_compliment
-     * @return String
-     * @access public
-     * @internal Converts a base-2**26 number to base-2**2
-     */
-    function toBits($twos_compliment = false)
-    {
-        $hex = $this->toHex($twos_compliment);
-        $bits = '';
-        for ($i = 0, $end = strlen($hex) & 0xFFFFFFF8; $i < $end; $i+=8) {
-            $bits.= str_pad(decbin(hexdec(substr($hex, $i, 8))), 32, '0', 
STR_PAD_LEFT);
-        }
-        if ($end != strlen($hex)) { // hexdec('') == 0
-            $bits.= str_pad(decbin(hexdec(substr($hex, $end))), strlen($hex) & 
7, '0', STR_PAD_LEFT);
-        }
-        return $this->precision > 0 ? substr($bits, -$this->precision) : 
ltrim($bits, '0');
-    }
-
-    /**
-     * Converts a BigInteger to a base-10 number.
-     *
-     * Here's an example:
-     * <code>
-     * <?php
-     *    include('Math/BigInteger.php');
-     *
-     *    $a = new Math_BigInteger('50');
-     *
-     *    echo $a->toString(); // outputs 50
-     * ?>
-     * </code>
-     *
-     * @return String
-     * @access public
-     * @internal Converts a base-2**26 number to base-10**7 (which is pretty 
much base-10)
-     */
-    function toString()
-    {
-        switch ( MATH_BIGINTEGER_MODE ) {
-            case MATH_BIGINTEGER_MODE_GMP:
-                return gmp_strval($this->value);
-            case MATH_BIGINTEGER_MODE_BCMATH:
-                if ($this->value === '0') {
-                    return '0';
-                }
-
-                return ltrim($this->value, '0');
-        }
-
-        if (!count($this->value)) {
-            return '0';
-        }
-
-        $temp = $this->copy();
-        $temp->is_negative = false;
-
-        $divisor = new Math_BigInteger();
-        $divisor->value = array(10000000); // eg. 10**7
-        $result = '';
-        while (count($temp->value)) {
-            list($temp, $mod) = $temp->divide($divisor);
-            $result = str_pad(isset($mod->value[0]) ? $mod->value[0] : '', 7, 
'0', STR_PAD_LEFT) . $result;
-        }
-        $result = ltrim($result, '0');
-        if (empty($result)) {
-            $result = '0';
-        }
-
-        if ($this->is_negative) {
-            $result = '-' . $result;
-        }
-
-        return $result;
-    }
-
-    /**
-     * Copy an object
-     *
-     * PHP5 passes objects by reference while PHP4 passes by value.  As such, 
we need a function to guarantee
-     * that all objects are passed by value, when appropriate.  More 
information can be found here:
-     *
-     * {@link http://php.net/language.oop5.basic#51624}
-     *
-     * @access public
-     * @see __clone()
-     * @return Math_BigInteger
-     */
-    function copy()
-    {
-        $temp = new Math_BigInteger();
-        $temp->value = $this->value;
-        $temp->is_negative = $this->is_negative;
-        $temp->generator = $this->generator;
-        $temp->precision = $this->precision;
-        $temp->bitmask = $this->bitmask;
-        return $temp;
-    }
-
-    /**
-     *  __toString() magic method
-     *
-     * Will be called, automatically, if you're supporting just PHP5.  If 
you're supporting PHP4, you'll need to call
-     * toString().
-     *
-     * @access public
-     * @internal Implemented per a suggestion by Techie-Michael - thanks!
-     */
-    function __toString()
-    {
-        return $this->toString();
-    }
-
-    /**
-     * __clone() magic method
-     *
-     * Although you can call Math_BigInteger::__toString() directly in PHP5, 
you cannot call Math_BigInteger::__clone()
-     * directly in PHP5.  You can in PHP4 since it's not a magic method, but 
in PHP5, you have to call it by using the PHP5
-     * only syntax of $y = clone $x.  As such, if you're trying to write an 
application that works on both PHP4 and PHP5,
-     * call Math_BigInteger::copy(), instead.
-     *
-     * @access public
-     * @see copy()
-     * @return Math_BigInteger
-     */
-    function __clone()
-    {
-        return $this->copy();
-    }
-
-    /**
-     *  __sleep() magic method
-     *
-     * Will be called, automatically, when serialize() is called on a 
Math_BigInteger object.
-     *
-     * @see __wakeup()
-     * @access public
-     */
-    function __sleep()
-    {
-        $this->hex = $this->toHex(true);
-        $vars = array('hex');
-        if ($this->generator != 'mt_rand') {
-            $vars[] = 'generator';
-        }
-        if ($this->precision > 0) {
-            $vars[] = 'precision';
-        }
-        return $vars;
-        
-    }
-
-    /**
-     *  __wakeup() magic method
-     *
-     * Will be called, automatically, when unserialize() is called on a 
Math_BigInteger object.
-     *
-     * @see __sleep()
-     * @access public
-     */
-    function __wakeup()
-    {
-        $temp = new Math_BigInteger($this->hex, -16);
-        $this->value = $temp->value;
-        $this->is_negative = $temp->is_negative;
-        $this->setRandomGenerator($this->generator);
-        if ($this->precision > 0) {
-            // recalculate $this->bitmask
-            $this->setPrecision($this->precision);
-        }
-    }
-
-    /**
-     * Adds two BigIntegers.
-     *
-     * Here's an example:
-     * <code>
-     * <?php
-     *    include('Math/BigInteger.php');
-     *
-     *    $a = new Math_BigInteger('10');
-     *    $b = new Math_BigInteger('20');
-     *
-     *    $c = $a->add($b);
-     *
-     *    echo $c->toString(); // outputs 30
-     * ?>
-     * </code>
-     *
-     * @param Math_BigInteger $y
-     * @return Math_BigInteger
-     * @access public
-     * @internal Performs base-2**52 addition
-     */
-    function add($y)
-    {
-        switch ( MATH_BIGINTEGER_MODE ) {
-            case MATH_BIGINTEGER_MODE_GMP:
-                $temp = new Math_BigInteger();
-                $temp->value = gmp_add($this->value, $y->value);
-
-                return $this->_normalize($temp);
-            case MATH_BIGINTEGER_MODE_BCMATH:
-                $temp = new Math_BigInteger();
-                $temp->value = bcadd($this->value, $y->value, 0);
-
-                return $this->_normalize($temp);
-        }
-
-        $temp = $this->_add($this->value, $this->is_negative, $y->value, 
$y->is_negative);
-
-        $result = new Math_BigInteger();
-        $result->value = $temp[MATH_BIGINTEGER_VALUE];
-        $result->is_negative = $temp[MATH_BIGINTEGER_SIGN];
-
-        return $this->_normalize($result);
-    }
-
-    /**
-     * Performs addition.
-     *
-     * @param Array $x_value
-     * @param Boolean $x_negative
-     * @param Array $y_value
-     * @param Boolean $y_negative
-     * @return Array
-     * @access private
-     */
-    function _add($x_value, $x_negative, $y_value, $y_negative)
-    {
-        $x_size = count($x_value);
-        $y_size = count($y_value);
-
-        if ($x_size == 0) {
-            return array(
-                MATH_BIGINTEGER_VALUE => $y_value,
-                MATH_BIGINTEGER_SIGN => $y_negative
-            );
-        } else if ($y_size == 0) {
-            return array(
-                MATH_BIGINTEGER_VALUE => $x_value,
-                MATH_BIGINTEGER_SIGN => $x_negative
-            );
-        }
-
-        // subtract, if appropriate
-        if ( $x_negative != $y_negative ) {
-            if ( $x_value == $y_value ) {
-                return array(
-                    MATH_BIGINTEGER_VALUE => array(),
-                    MATH_BIGINTEGER_SIGN => false
-                );
-            }
-
-            $temp = $this->_subtract($x_value, false, $y_value, false);
-            $temp[MATH_BIGINTEGER_SIGN] = $this->_compare($x_value, false, 
$y_value, false) > 0 ?
-                                          $x_negative : $y_negative;
-
-            return $temp;
-        }
-
-        if ($x_size < $y_size) {
-            $size = $x_size;
-            $value = $y_value;
-        } else {
-            $size = $y_size;
-            $value = $x_value;
-        }
-
-        $value[] = 0; // just in case the carry adds an extra digit
-
-        $carry = 0;
-        for ($i = 0, $j = 1; $j < $size; $i+=2, $j+=2) {
-            $sum = $x_value[$j] * 0x4000000 + $x_value[$i] + $y_value[$j] * 
0x4000000 + $y_value[$i] + $carry;
-            $carry = $sum >= MATH_BIGINTEGER_MAX_DIGIT52; // eg. floor($sum / 
2**52); only possible values (in any base) are 0 and 1
-            $sum = $carry ? $sum - MATH_BIGINTEGER_MAX_DIGIT52 : $sum;
-
-            $temp = (int) ($sum / 0x4000000);
-
-            $value[$i] = (int) ($sum - 0x4000000 * $temp); // eg. a faster 
alternative to fmod($sum, 0x4000000)
-            $value[$j] = $temp;
-        }
-
-        if ($j == $size) { // ie. if $y_size is odd
-            $sum = $x_value[$i] + $y_value[$i] + $carry;
-            $carry = $sum >= 0x4000000;
-            $value[$i] = $carry ? $sum - 0x4000000 : $sum;
-            ++$i; // ie. let $i = $j since we've just done $value[$i]
-        }
-
-        if ($carry) {
-            for (; $value[$i] == 0x3FFFFFF; ++$i) {
-                $value[$i] = 0;
-            }
-            ++$value[$i];
-        }
-
-        return array(
-            MATH_BIGINTEGER_VALUE => $this->_trim($value),
-            MATH_BIGINTEGER_SIGN => $x_negative
-        );
-    }
-
-    /**
-     * Subtracts two BigIntegers.
-     *
-     * Here's an example:
-     * <code>
-     * <?php
-     *    include('Math/BigInteger.php');
-     *
-     *    $a = new Math_BigInteger('10');
-     *    $b = new Math_BigInteger('20');
-     *
-     *    $c = $a->subtract($b);
-     *
-     *    echo $c->toString(); // outputs -10
-     * ?>
-     * </code>
-     *
-     * @param Math_BigInteger $y
-     * @return Math_BigInteger
-     * @access public
-     * @internal Performs base-2**52 subtraction
-     */
-    function subtract($y)
-    {
-        switch ( MATH_BIGINTEGER_MODE ) {
-            case MATH_BIGINTEGER_MODE_GMP:
-                $temp = new Math_BigInteger();
-                $temp->value = gmp_sub($this->value, $y->value);
-
-                return $this->_normalize($temp);
-            case MATH_BIGINTEGER_MODE_BCMATH:
-                $temp = new Math_BigInteger();
-                $temp->value = bcsub($this->value, $y->value, 0);
-
-                return $this->_normalize($temp);
-        }
-
-        $temp = $this->_subtract($this->value, $this->is_negative, $y->value, 
$y->is_negative);
-
-        $result = new Math_BigInteger();
-        $result->value = $temp[MATH_BIGINTEGER_VALUE];
-        $result->is_negative = $temp[MATH_BIGINTEGER_SIGN];
-
-        return $this->_normalize($result);
-    }
-
-    /**
-     * Performs subtraction.
-     *
-     * @param Array $x_value
-     * @param Boolean $x_negative
-     * @param Array $y_value
-     * @param Boolean $y_negative
-     * @return Array
-     * @access private
-     */
-    function _subtract($x_value, $x_negative, $y_value, $y_negative)
-    {
-        $x_size = count($x_value);
-        $y_size = count($y_value);
-
-        if ($x_size == 0) {
-            return array(
-                MATH_BIGINTEGER_VALUE => $y_value,
-                MATH_BIGINTEGER_SIGN => !$y_negative
-            );
-        } else if ($y_size == 0) {
-            return array(
-                MATH_BIGINTEGER_VALUE => $x_value,
-                MATH_BIGINTEGER_SIGN => $x_negative
-            );
-        }
-
-        // add, if appropriate (ie. -$x - +$y or +$x - -$y)
-        if ( $x_negative != $y_negative ) {
-            $temp = $this->_add($x_value, false, $y_value, false);
-            $temp[MATH_BIGINTEGER_SIGN] = $x_negative;
-
-            return $temp;
-        }
-
-        $diff = $this->_compare($x_value, $x_negative, $y_value, $y_negative);
-
-        if ( !$diff ) {
-            return array(
-                MATH_BIGINTEGER_VALUE => array(),
-                MATH_BIGINTEGER_SIGN => false
-            );
-        }
-
-        // switch $x and $y around, if appropriate.
-        if ( (!$x_negative && $diff < 0) || ($x_negative && $diff > 0) ) {
-            $temp = $x_value;
-            $x_value = $y_value;
-            $y_value = $temp;
-
-            $x_negative = !$x_negative;
-
-            $x_size = count($x_value);
-            $y_size = count($y_value);
-        }
-
-        // at this point, $x_value should be at least as big as - if not 
bigger than - $y_value
-
-        $carry = 0;
-        for ($i = 0, $j = 1; $j < $y_size; $i+=2, $j+=2) {
-            $sum = $x_value[$j] * 0x4000000 + $x_value[$i] - $y_value[$j] * 
0x4000000 - $y_value[$i] - $carry;
-            $carry = $sum < 0; // eg. floor($sum / 2**52); only possible 
values (in any base) are 0 and 1
-            $sum = $carry ? $sum + MATH_BIGINTEGER_MAX_DIGIT52 : $sum;
-
-            $temp = (int) ($sum / 0x4000000);
-
-            $x_value[$i] = (int) ($sum - 0x4000000 * $temp);
-            $x_value[$j] = $temp;
-        }
-
-        if ($j == $y_size) { // ie. if $y_size is odd
-            $sum = $x_value[$i] - $y_value[$i] - $carry;
-            $carry = $sum < 0;
-            $x_value[$i] = $carry ? $sum + 0x4000000 : $sum;
-            ++$i;
-        }
-
-        if ($carry) {
-            for (; !$x_value[$i]; ++$i) {
-                $x_value[$i] = 0x3FFFFFF;
-            }
-            --$x_value[$i];
-        }
-
-        return array(
-            MATH_BIGINTEGER_VALUE => $this->_trim($x_value),
-            MATH_BIGINTEGER_SIGN => $x_negative
-        );
-    }
-
-    /**
-     * Multiplies two BigIntegers
-     *
-     * Here's an example:
-     * <code>
-     * <?php
-     *    include('Math/BigInteger.php');
-     *
-     *    $a = new Math_BigInteger('10');
-     *    $b = new Math_BigInteger('20');
-     *
-     *    $c = $a->multiply($b);
-     *
-     *    echo $c->toString(); // outputs 200
-     * ?>
-     * </code>
-     *
-     * @param Math_BigInteger $x
-     * @return Math_BigInteger
-     * @access public
-     */
-    function multiply($x)
-    {
-        switch ( MATH_BIGINTEGER_MODE ) {
-            case MATH_BIGINTEGER_MODE_GMP:
-                $temp = new Math_BigInteger();
-                $temp->value = gmp_mul($this->value, $x->value);
-
-                return $this->_normalize($temp);
-            case MATH_BIGINTEGER_MODE_BCMATH:
-                $temp = new Math_BigInteger();
-                $temp->value = bcmul($this->value, $x->value, 0);
-
-                return $this->_normalize($temp);
-        }
-
-        $temp = $this->_multiply($this->value, $this->is_negative, $x->value, 
$x->is_negative);
-
-        $product = new Math_BigInteger();
-        $product->value = $temp[MATH_BIGINTEGER_VALUE];
-        $product->is_negative = $temp[MATH_BIGINTEGER_SIGN];
-
-        return $this->_normalize($product);
-    }
-
-    /**
-     * Performs multiplication.
-     *
-     * @param Array $x_value
-     * @param Boolean $x_negative
-     * @param Array $y_value
-     * @param Boolean $y_negative
-     * @return Array
-     * @access private
-     */
-    function _multiply($x_value, $x_negative, $y_value, $y_negative)
-    {
-        //if ( $x_value == $y_value ) {
-        //    return array(
-        //        MATH_BIGINTEGER_VALUE => $this->_square($x_value),
-        //        MATH_BIGINTEGER_SIGN => $x_sign != $y_value
-        //    );
-        //}
-
-        $x_length = count($x_value);
-        $y_length = count($y_value);
-
-        if ( !$x_length || !$y_length ) { // a 0 is being multiplied
-            return array(
-                MATH_BIGINTEGER_VALUE => array(),
-                MATH_BIGINTEGER_SIGN => false
-            );
-        }
-
-        return array(
-            MATH_BIGINTEGER_VALUE => min($x_length, $y_length) < 2 * 
MATH_BIGINTEGER_KARATSUBA_CUTOFF ?
-                $this->_trim($this->_regularMultiply($x_value, $y_value)) :
-                $this->_trim($this->_karatsuba($x_value, $y_value)),
-            MATH_BIGINTEGER_SIGN => $x_negative != $y_negative
-        );
-    }
-
-    /**
-     * Performs long multiplication on two BigIntegers
-     *
-     * Modeled after 'multiply' in MutableBigInteger.java.
-     *
-     * @param Array $x_value
-     * @param Array $y_value
-     * @return Array
-     * @access private
-     */
-    function _regularMultiply($x_value, $y_value)
-    {
-        $x_length = count($x_value);
-        $y_length = count($y_value);
-
-        if ( !$x_length || !$y_length ) { // a 0 is being multiplied
-            return array();
-        }
-
-        if ( $x_length < $y_length ) {
-            $temp = $x_value;
-            $x_value = $y_value;
-            $y_value = $temp;
-
-            $x_length = count($x_value);
-            $y_length = count($y_value);
-        }
-
-        $product_value = $this->_array_repeat(0, $x_length + $y_length);
-
-        // the following for loop could be removed if the for loop following it
-        // (the one with nested for loops) initially set $i to 0, but
-        // doing so would also make the result in one set of unnecessary adds,
-        // since on the outermost loops first pass, $product->value[$k] is 
going
-        // to always be 0
-
-        $carry = 0;
-
-        for ($j = 0; $j < $x_length; ++$j) { // ie. $i = 0
-            $temp = $x_value[$j] * $y_value[0] + $carry; // $product_value[$k] 
== 0
-            $carry = (int) ($temp / 0x4000000);
-            $product_value[$j] = (int) ($temp - 0x4000000 * $carry);
-        }
-
-        $product_value[$j] = $carry;
-
-        // the above for loop is what the previous comment was talking about.  
the
-        // following for loop is the "one with nested for loops"
-        for ($i = 1; $i < $y_length; ++$i) {
-            $carry = 0;
-
-            for ($j = 0, $k = $i; $j < $x_length; ++$j, ++$k) {
-                $temp = $product_value[$k] + $x_value[$j] * $y_value[$i] + 
$carry;
-                $carry = (int) ($temp / 0x4000000);
-                $product_value[$k] = (int) ($temp - 0x4000000 * $carry);
-            }
-
-            $product_value[$k] = $carry;
-        }
-
-        return $product_value;
-    }
-
-    /**
-     * Performs Karatsuba multiplication on two BigIntegers
-     *
-     * See {@link http://en.wikipedia.org/wiki/Karatsuba_algorithm Karatsuba 
algorithm} and
-     * {@link http://math.libtomcrypt.com/files/tommath.pdf#page=120 MPM 
5.2.3}.
-     *
-     * @param Array $x_value
-     * @param Array $y_value
-     * @return Array
-     * @access private
-     */
-    function _karatsuba($x_value, $y_value)
-    {
-        $m = min(count($x_value) >> 1, count($y_value) >> 1);
-
-        if ($m < MATH_BIGINTEGER_KARATSUBA_CUTOFF) {
-            return $this->_regularMultiply($x_value, $y_value);
-        }
-
-        $x1 = array_slice($x_value, $m);
-        $x0 = array_slice($x_value, 0, $m);
-        $y1 = array_slice($y_value, $m);
-        $y0 = array_slice($y_value, 0, $m);
-
-        $z2 = $this->_karatsuba($x1, $y1);
-        $z0 = $this->_karatsuba($x0, $y0);
-
-        $z1 = $this->_add($x1, false, $x0, false);
-        $temp = $this->_add($y1, false, $y0, false);
-        $z1 = $this->_karatsuba($z1[MATH_BIGINTEGER_VALUE], 
$temp[MATH_BIGINTEGER_VALUE]);
-        $temp = $this->_add($z2, false, $z0, false);
-        $z1 = $this->_subtract($z1, false, $temp[MATH_BIGINTEGER_VALUE], 
false);
-
-        $z2 = array_merge(array_fill(0, 2 * $m, 0), $z2);
-        $z1[MATH_BIGINTEGER_VALUE] = array_merge(array_fill(0, $m, 0), 
$z1[MATH_BIGINTEGER_VALUE]);
-
-        $xy = $this->_add($z2, false, $z1[MATH_BIGINTEGER_VALUE], 
$z1[MATH_BIGINTEGER_SIGN]);
-        $xy = $this->_add($xy[MATH_BIGINTEGER_VALUE], 
$xy[MATH_BIGINTEGER_SIGN], $z0, false);
-
-        return $xy[MATH_BIGINTEGER_VALUE];
-    }
-
-    /**
-     * Performs squaring
-     *
-     * @param Array $x
-     * @return Array
-     * @access private
-     */
-    function _square($x = false)
-    {
-        return count($x) < 2 * MATH_BIGINTEGER_KARATSUBA_CUTOFF ?
-            $this->_trim($this->_baseSquare($x)) :
-            $this->_trim($this->_karatsubaSquare($x));
-    }
-
-    /**
-     * Performs traditional squaring on two BigIntegers
-     *
-     * Squaring can be done faster than multiplying a number by itself can be. 
 See
-     * {@link http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf#page=7 
HAC 14.2.4} /
-     * {@link http://math.libtomcrypt.com/files/tommath.pdf#page=141 MPM 5.3} 
for more information.
-     *
-     * @param Array $value
-     * @return Array
-     * @access private
-     */
-    function _baseSquare($value)
-    {
-        if ( empty($value) ) {
-            return array();
-        }
-        $square_value = $this->_array_repeat(0, 2 * count($value));
-
-        for ($i = 0, $max_index = count($value) - 1; $i <= $max_index; ++$i) {
-            $i2 = $i << 1;
-
-            $temp = $square_value[$i2] + $value[$i] * $value[$i];
-            $carry = (int) ($temp / 0x4000000);
-            $square_value[$i2] = (int) ($temp - 0x4000000 * $carry);
-
-            // note how we start from $i+1 instead of 0 as we do in 
multiplication.
-            for ($j = $i + 1, $k = $i2 + 1; $j <= $max_index; ++$j, ++$k) {
-                $temp = $square_value[$k] + 2 * $value[$j] * $value[$i] + 
$carry;
-                $carry = (int) ($temp / 0x4000000);
-                $square_value[$k] = (int) ($temp - 0x4000000 * $carry);
-            }
-
-            // the following line can yield values larger 2**15.  at this 
point, PHP should switch
-            // over to floats.
-            $square_value[$i + $max_index + 1] = $carry;
-        }
-
-        return $square_value;
-    }
-
-    /**
-     * Performs Karatsuba "squaring" on two BigIntegers
-     *
-     * See {@link http://en.wikipedia.org/wiki/Karatsuba_algorithm Karatsuba 
algorithm} and
-     * {@link http://math.libtomcrypt.com/files/tommath.pdf#page=151 MPM 
5.3.4}.
-     *
-     * @param Array $value
-     * @return Array
-     * @access private
-     */
-    function _karatsubaSquare($value)
-    {
-        $m = count($value) >> 1;
-
-        if ($m < MATH_BIGINTEGER_KARATSUBA_CUTOFF) {
-            return $this->_baseSquare($value);
-        }
-
-        $x1 = array_slice($value, $m);
-        $x0 = array_slice($value, 0, $m);
-
-        $z2 = $this->_karatsubaSquare($x1);
-        $z0 = $this->_karatsubaSquare($x0);
-
-        $z1 = $this->_add($x1, false, $x0, false);
-        $z1 = $this->_karatsubaSquare($z1[MATH_BIGINTEGER_VALUE]);
-        $temp = $this->_add($z2, false, $z0, false);
-        $z1 = $this->_subtract($z1, false, $temp[MATH_BIGINTEGER_VALUE], 
false);
-
-        $z2 = array_merge(array_fill(0, 2 * $m, 0), $z2);
-        $z1[MATH_BIGINTEGER_VALUE] = array_merge(array_fill(0, $m, 0), 
$z1[MATH_BIGINTEGER_VALUE]);
-
-        $xx = $this->_add($z2, false, $z1[MATH_BIGINTEGER_VALUE], 
$z1[MATH_BIGINTEGER_SIGN]);
-        $xx = $this->_add($xx[MATH_BIGINTEGER_VALUE], 
$xx[MATH_BIGINTEGER_SIGN], $z0, false);
-
-        return $xx[MATH_BIGINTEGER_VALUE];
-    }
-
-    /**
-     * Divides two BigIntegers.
-     *
-     * Returns an array whose first element contains the quotient and whose 
second element contains the
-     * "common residue".  If the remainder would be positive, the "common 
residue" and the remainder are the
-     * same.  If the remainder would be negative, the "common residue" is 
equal to the sum of the remainder
-     * and the divisor (basically, the "common residue" is the first positive 
modulo).
-     *
-     * Here's an example:
-     * <code>
-     * <?php
-     *    include('Math/BigInteger.php');
-     *
-     *    $a = new Math_BigInteger('10');
-     *    $b = new Math_BigInteger('20');
-     *
-     *    list($quotient, $remainder) = $a->divide($b);
-     *
-     *    echo $quotient->toString(); // outputs 0
-     *    echo "\r\n";
-     *    echo $remainder->toString(); // outputs 10
-     * ?>
-     * </code>
-     *
-     * @param Math_BigInteger $y
-     * @return Array
-     * @access public
-     * @internal This function is based off of {@link 
http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf#page=9 HAC 14.20}.
-     */
-    function divide($y)
-    {
-        switch ( MATH_BIGINTEGER_MODE ) {
-            case MATH_BIGINTEGER_MODE_GMP:
-                $quotient = new Math_BigInteger();
-                $remainder = new Math_BigInteger();
-
-                list($quotient->value, $remainder->value) = 
gmp_div_qr($this->value, $y->value);
-
-                if (gmp_sign($remainder->value) < 0) {
-                    $remainder->value = gmp_add($remainder->value, 
gmp_abs($y->value));
-                }
-
-                return array($this->_normalize($quotient), 
$this->_normalize($remainder));
-            case MATH_BIGINTEGER_MODE_BCMATH:
-                $quotient = new Math_BigInteger();
-                $remainder = new Math_BigInteger();
-
-                $quotient->value = bcdiv($this->value, $y->value, 0);
-                $remainder->value = bcmod($this->value, $y->value);
-
-                if ($remainder->value[0] == '-') {
-                    $remainder->value = bcadd($remainder->value, $y->value[0] 
== '-' ? substr($y->value, 1) : $y->value, 0);
-                }
-
-                return array($this->_normalize($quotient), 
$this->_normalize($remainder));
-        }
-
-        if (count($y->value) == 1) {
-            list($q, $r) = $this->_divide_digit($this->value, $y->value[0]);
-            $quotient = new Math_BigInteger();
-            $remainder = new Math_BigInteger();
-            $quotient->value = $q;
-            $remainder->value = array($r);
-            $quotient->is_negative = $this->is_negative != $y->is_negative;
-            return array($this->_normalize($quotient), 
$this->_normalize($remainder));
-        }
-
-        static $zero;
-        if ( !isset($zero) ) {
-            $zero = new Math_BigInteger();
-        }
-
-        $x = $this->copy();
-        $y = $y->copy();
-
-        $x_sign = $x->is_negative;
-        $y_sign = $y->is_negative;
-
-        $x->is_negative = $y->is_negative = false;
-
-        $diff = $x->compare($y);
-
-        if ( !$diff ) {
-            $temp = new Math_BigInteger();
-            $temp->value = array(1);
-            $temp->is_negative = $x_sign != $y_sign;
-            return array($this->_normalize($temp), $this->_normalize(new 
Math_BigInteger()));
-        }
-
-        if ( $diff < 0 ) {
-            // if $x is negative, "add" $y.
-            if ( $x_sign ) {
-                $x = $y->subtract($x);
-            }
-            return array($this->_normalize(new Math_BigInteger()), 
$this->_normalize($x));
-        }
-
-        // normalize $x and $y as described in HAC 14.23 / 14.24
-        $msb = $y->value[count($y->value) - 1];
-        for ($shift = 0; !($msb & 0x2000000); ++$shift) {
-            $msb <<= 1;
-        }
-        $x->_lshift($shift);
-        $y->_lshift($shift);
-        $y_value = &$y->value;
-
-        $x_max = count($x->value) - 1;
-        $y_max = count($y->value) - 1;
-
-        $quotient = new Math_BigInteger();
-        $quotient_value = &$quotient->value;
-        $quotient_value = $this->_array_repeat(0, $x_max - $y_max + 1);
-
-        static $temp, $lhs, $rhs;
-        if (!isset($temp)) {
-            $temp = new Math_BigInteger();
-            $lhs =  new Math_BigInteger();
-            $rhs =  new Math_BigInteger();
-        }
-        $temp_value = &$temp->value;
-        $rhs_value =  &$rhs->value;
-
-        // $temp = $y << ($x_max - $y_max-1) in base 2**26
-        $temp_value = array_merge($this->_array_repeat(0, $x_max - $y_max), 
$y_value);
-
-        while ( $x->compare($temp) >= 0 ) {
-            // calculate the "common residue"
-            ++$quotient_value[$x_max - $y_max];
-            $x = $x->subtract($temp);
-            $x_max = count($x->value) - 1;
-        }
-
-        for ($i = $x_max; $i >= $y_max + 1; --$i) {
-            $x_value = &$x->value;
-            $x_window = array(
-                isset($x_value[$i]) ? $x_value[$i] : 0,
-                isset($x_value[$i - 1]) ? $x_value[$i - 1] : 0,
-                isset($x_value[$i - 2]) ? $x_value[$i - 2] : 0
-            );
-            $y_window = array(
-                $y_value[$y_max],
-                ( $y_max > 0 ) ? $y_value[$y_max - 1] : 0
-            );
-
-            $q_index = $i - $y_max - 1;
-            if ($x_window[0] == $y_window[0]) {
-                $quotient_value[$q_index] = 0x3FFFFFF;
-            } else {
-                $quotient_value[$q_index] = (int) (
-                    ($x_window[0] * 0x4000000 + $x_window[1])
-                    /
-                    $y_window[0]
-                );
-            }
-
-            $temp_value = array($y_window[1], $y_window[0]);
-
-            $lhs->value = array($quotient_value[$q_index]);
-            $lhs = $lhs->multiply($temp);
-
-            $rhs_value = array($x_window[2], $x_window[1], $x_window[0]);
-
-            while ( $lhs->compare($rhs) > 0 ) {
-                --$quotient_value[$q_index];
-
-                $lhs->value = array($quotient_value[$q_index]);
-                $lhs = $lhs->multiply($temp);
-            }
-
-            $adjust = $this->_array_repeat(0, $q_index);
-            $temp_value = array($quotient_value[$q_index]);
-            $temp = $temp->multiply($y);
-            $temp_value = &$temp->value;
-            $temp_value = array_merge($adjust, $temp_value);
-
-            $x = $x->subtract($temp);
-
-            if ($x->compare($zero) < 0) {
-                $temp_value = array_merge($adjust, $y_value);
-                $x = $x->add($temp);
-
-                --$quotient_value[$q_index];
-            }
-
-            $x_max = count($x_value) - 1;
-        }
-
-        // unnormalize the remainder
-        $x->_rshift($shift);
-
-        $quotient->is_negative = $x_sign != $y_sign;
-
-        // calculate the "common residue", if appropriate
-        if ( $x_sign ) {
-            $y->_rshift($shift);
-            $x = $y->subtract($x);
-        }
-
-        return array($this->_normalize($quotient), $this->_normalize($x));
-    }
-
-    /**
-     * Divides a BigInteger by a regular integer
-     *
-     * abc / x = a00 / x + b0 / x + c / x
-     *
-     * @param Array $dividend
-     * @param Array $divisor
-     * @return Array
-     * @access private
-     */
-    function _divide_digit($dividend, $divisor)
-    {
-        $carry = 0;
-        $result = array();
-
-        for ($i = count($dividend) - 1; $i >= 0; --$i) {
-            $temp = 0x4000000 * $carry + $dividend[$i];
-            $result[$i] = (int) ($temp / $divisor);
-            $carry = (int) ($temp - $divisor * $result[$i]);
-        }
-
-        return array($result, $carry);
-    }
-
-    /**
-     * Performs modular exponentiation.
-     *
-     * Here's an example:
-     * <code>
-     * <?php
-     *    include('Math/BigInteger.php');
-     *
-     *    $a = new Math_BigInteger('10');
-     *    $b = new Math_BigInteger('20');
-     *    $c = new Math_BigInteger('30');
-     *
-     *    $c = $a->modPow($b, $c);
-     *
-     *    echo $c->toString(); // outputs 10
-     * ?>
-     * </code>
-     *
-     * @param Math_BigInteger $e
-     * @param Math_BigInteger $n
-     * @return Math_BigInteger
-     * @access public
-     * @internal The most naive approach to modular exponentiation has very 
unreasonable requirements, and
-     *    and although the approach involving repeated squaring does vastly 
better, it, too, is impractical
-     *    for our purposes.  The reason being that division - by far the most 
complicated and time-consuming
-     *    of the basic operations (eg. +,-,*,/) - occurs multiple times within 
it.
-     *
-     *    Modular reductions resolve this issue.  Although an individual 
modular reduction takes more time
-     *    then an individual division, when performed in succession (with the 
same modulo), they're a lot faster.
-     *
-     *    The two most commonly used modular reductions are Barrett and 
Montgomery reduction.  Montgomery reduction,
-     *    although faster, only works when the gcd of the modulo and of the 
base being used is 1.  In RSA, when the
-     *    base is a power of two, the modulo - a product of two primes - is 
always going to have a gcd of 1 (because
-     *    the product of two odd numbers is odd), but what about when RSA 
isn't used?
-     *
-     *    In contrast, Barrett reduction has no such constraint.  As such, 
some bigint implementations perform a
-     *    Barrett reduction after every operation in the modpow function.  
Others perform Barrett reductions when the
-     *    modulo is even and Montgomery reductions when the modulo is odd.  
BigInteger.java's modPow method, however,
-     *    uses a trick involving the Chinese Remainder Theorem to factor the 
even modulo into two numbers - one odd and
-     *    the other, a power of two - and recombine them, later.  This is the 
method that this modPow function uses.
-     *    {@link http://islab.oregonstate.edu/papers/j34monex.pdf Montgomery 
Reduction with Even Modulus} elaborates.
-     */
-    function modPow($e, $n)
-    {
-        $n = $this->bitmask !== false && $this->bitmask->compare($n) < 0 ? 
$this->bitmask : $n->abs();
-
-        if ($e->compare(new Math_BigInteger()) < 0) {
-            $e = $e->abs();
-
-            $temp = $this->modInverse($n);
-            if ($temp === false) {
-                return false;
-            }
-
-            return $this->_normalize($temp->modPow($e, $n));
-        }
-
-        switch ( MATH_BIGINTEGER_MODE ) {
-            case MATH_BIGINTEGER_MODE_GMP:
-                $temp = new Math_BigInteger();
-                $temp->value = gmp_powm($this->value, $e->value, $n->value);
-
-                return $this->_normalize($temp);
-            case MATH_BIGINTEGER_MODE_BCMATH:
-                $temp = new Math_BigInteger();
-                $temp->value = bcpowmod($this->value, $e->value, $n->value, 0);
-
-                return $this->_normalize($temp);
-        }
-
-        if ( empty($e->value) ) {
-            $temp = new Math_BigInteger();
-            $temp->value = array(1);
-            return $this->_normalize($temp);
-        }
-
-        if ( $e->value == array(1) ) {
-            list(, $temp) = $this->divide($n);
-            return $this->_normalize($temp);
-        }
-
-        if ( $e->value == array(2) ) {
-            $temp = new Math_BigInteger();
-            $temp->value = $this->_square($this->value);
-            list(, $temp) = $temp->divide($n);
-            return $this->_normalize($temp);
-        }
-
-        return $this->_normalize($this->_slidingWindow($e, $n, 
MATH_BIGINTEGER_BARRETT));
-
-        // is the modulo odd?
-        if ( $n->value[0] & 1 ) {
-            return $this->_normalize($this->_slidingWindow($e, $n, 
MATH_BIGINTEGER_MONTGOMERY));
-        }
-        // if it's not, it's even
-
-        // find the lowest set bit (eg. the max pow of 2 that divides $n)
-        for ($i = 0; $i < count($n->value); ++$i) {
-            if ( $n->value[$i] ) {
-                $temp = decbin($n->value[$i]);
-                $j = strlen($temp) - strrpos($temp, '1') - 1;
-                $j+= 26 * $i;
-                break;
-            }
-        }
-        // at this point, 2^$j * $n/(2^$j) == $n
-
-        $mod1 = $n->copy();
-        $mod1->_rshift($j);
-        $mod2 = new Math_BigInteger();
-        $mod2->value = array(1);
-        $mod2->_lshift($j);
-
-        $part1 = ( $mod1->value != array(1) ) ? $this->_slidingWindow($e, 
$mod1, MATH_BIGINTEGER_MONTGOMERY) : new Math_BigInteger();
-        $part2 = $this->_slidingWindow($e, $mod2, MATH_BIGINTEGER_POWEROF2);
-
-        $y1 = $mod2->modInverse($mod1);
-        $y2 = $mod1->modInverse($mod2);
-
-        $result = $part1->multiply($mod2);
-        $result = $result->multiply($y1);
-
-        $temp = $part2->multiply($mod1);
-        $temp = $temp->multiply($y2);
-
-        $result = $result->add($temp);
-        list(, $result) = $result->divide($n);
-
-        return $this->_normalize($result);
-    }
-
-    /**
-     * Performs modular exponentiation.
-     *
-     * Alias for Math_BigInteger::modPow()
-     *
-     * @param Math_BigInteger $e
-     * @param Math_BigInteger $n
-     * @return Math_BigInteger
-     * @access public
-     */
-    function powMod($e, $n)
-    {
-        return $this->modPow($e, $n);
-    }
-
-    /**
-     * Sliding Window k-ary Modular Exponentiation
-     *
-     * Based on {@link 
http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf#page=27 HAC 14.85} /
-     * {@link http://math.libtomcrypt.com/files/tommath.pdf#page=210 MPM 7.7}. 
 In a departure from those algorithims,
-     * however, this function performs a modular reduction after every 
multiplication and squaring operation.
-     * As such, this function has the same preconditions that the reductions 
being used do.
-     *
-     * @param Math_BigInteger $e
-     * @param Math_BigInteger $n
-     * @param Integer $mode
-     * @return Math_BigInteger
-     * @access private
-     */
-    function _slidingWindow($e, $n, $mode)
-    {
-        static $window_ranges = array(7, 25, 81, 241, 673, 1793); // from 
BigInteger.java's oddModPow function
-        //static $window_ranges = array(0, 7, 36, 140, 450, 1303, 3529); // 
from MPM 7.3.1
-
-        $e_value = $e->value;
-        $e_length = count($e_value) - 1;
-        $e_bits = decbin($e_value[$e_length]);
-        for ($i = $e_length - 1; $i >= 0; --$i) {
-            $e_bits.= str_pad(decbin($e_value[$i]), 26, '0', STR_PAD_LEFT);
-        }
-
-        $e_length = strlen($e_bits);
-
-        // calculate the appropriate window size.
-        // $window_size == 3 if $window_ranges is between 25 and 81, for 
example.
-        for ($i = 0, $window_size = 1; $e_length > $window_ranges[$i] && $i < 
count($window_ranges); ++$window_size, ++$i);
-
-        $n_value = $n->value;
-
-        // precompute $this^0 through $this^$window_size
-        $powers = array();
-        $powers[1] = $this->_prepareReduce($this->value, $n_value, $mode);
-        $powers[2] = $this->_squareReduce($powers[1], $n_value, $mode);
-
-        // we do every other number since substr($e_bits, $i, $j+1) (see 
below) is supposed to end
-        // in a 1.  ie. it's supposed to be odd.
-        $temp = 1 << ($window_size - 1);
-        for ($i = 1; $i < $temp; ++$i) {
-            $i2 = $i << 1;
-            $powers[$i2 + 1] = $this->_multiplyReduce($powers[$i2 - 1], 
$powers[2], $n_value, $mode);
-        }
-
-        $result = array(1);
-        $result = $this->_prepareReduce($result, $n_value, $mode);
-
-        for ($i = 0; $i < $e_length; ) {
-            if ( !$e_bits[$i] ) {
-                $result = $this->_squareReduce($result, $n_value, $mode);
-                ++$i;
-            } else {
-                for ($j = $window_size - 1; $j > 0; --$j) {
-                    if ( !empty($e_bits[$i + $j]) ) {
-                        break;
-                    }
-                }
-
-                for ($k = 0; $k <= $j; ++$k) {// eg. the length of 
substr($e_bits, $i, $j+1)
-                    $result = $this->_squareReduce($result, $n_value, $mode);
-                }
-
-                $result = $this->_multiplyReduce($result, 
$powers[bindec(substr($e_bits, $i, $j + 1))], $n_value, $mode);
-
-                $i+=$j + 1;
-            }
-        }
-
-        $temp = new Math_BigInteger();
-        $temp->value = $this->_reduce($result, $n_value, $mode);
-
-        return $temp;
-    }
-
-    /**
-     * Modular reduction
-     *
-     * For most $modes this will return the remainder.
-     *
-     * @see _slidingWindow()
-     * @access private
-     * @param Array $x
-     * @param Array $n
-     * @param Integer $mode
-     * @return Array
-     */
-    function _reduce($x, $n, $mode)
-    {
-        switch ($mode) {
-            case MATH_BIGINTEGER_MONTGOMERY:
-                return $this->_montgomery($x, $n);
-            case MATH_BIGINTEGER_BARRETT:
-                return $this->_barrett($x, $n);
-            case MATH_BIGINTEGER_POWEROF2:
-                $lhs = new Math_BigInteger();
-                $lhs->value = $x;
-                $rhs = new Math_BigInteger();
-                $rhs->value = $n;
-                return $x->_mod2($n);
-            case MATH_BIGINTEGER_CLASSIC:
-                $lhs = new Math_BigInteger();
-                $lhs->value = $x;
-                $rhs = new Math_BigInteger();
-                $rhs->value = $n;
-                list(, $temp) = $lhs->divide($rhs);
-                return $temp->value;
-            case MATH_BIGINTEGER_NONE:
-                return $x;
-            default:
-                // an invalid $mode was provided
-        }
-    }
-
-    /**
-     * Modular reduction preperation
-     *
-     * @see _slidingWindow()
-     * @access private
-     * @param Array $x
-     * @param Array $n
-     * @param Integer $mode
-     * @return Array
-     */
-    function _prepareReduce($x, $n, $mode)
-    {
-        if ($mode == MATH_BIGINTEGER_MONTGOMERY) {
-            return $this->_prepMontgomery($x, $n);
-        }
-        return $this->_reduce($x, $n, $mode);
-    }
-
-    /**
-     * Modular multiply
-     *
-     * @see _slidingWindow()
-     * @access private
-     * @param Array $x
-     * @param Array $y
-     * @param Array $n
-     * @param Integer $mode
-     * @return Array
-     */
-    function _multiplyReduce($x, $y, $n, $mode)
-    {
-        if ($mode == MATH_BIGINTEGER_MONTGOMERY) {
-            return $this->_montgomeryMultiply($x, $y, $n);
-        }
-        $temp = $this->_multiply($x, false, $y, false);
-        return $this->_reduce($temp[MATH_BIGINTEGER_VALUE], $n, $mode);
-    }
-
-    /**
-     * Modular square
-     *
-     * @see _slidingWindow()
-     * @access private
-     * @param Array $x
-     * @param Array $n
-     * @param Integer $mode
-     * @return Array
-     */
-    function _squareReduce($x, $n, $mode)
-    {
-        if ($mode == MATH_BIGINTEGER_MONTGOMERY) {
-            return $this->_montgomeryMultiply($x, $x, $n);
-        }
-        return $this->_reduce($this->_square($x), $n, $mode);
-    }
-
-    /**
-     * Modulos for Powers of Two
-     *
-     * Calculates $x%$n, where $n = 2**$e, for some $e.  Since this is 
basically the same as doing $x & ($n-1),
-     * we'll just use this function as a wrapper for doing that.
-     *
-     * @see _slidingWindow()
-     * @access private
-     * @param Math_BigInteger
-     * @return Math_BigInteger
-     */
-    function _mod2($n)
-    {
-        $temp = new Math_BigInteger();
-        $temp->value = array(1);
-        return $this->bitwise_and($n->subtract($temp));
-    }
-
-    /**
-     * Barrett Modular Reduction
-     *
-     * See {@link 
http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf#page=14 HAC 14.3.3} /
-     * {@link http://math.libtomcrypt.com/files/tommath.pdf#page=165 MPM 
6.2.5} for more information.  Modified slightly,
-     * so as not to require negative numbers (initially, this script didn't 
support negative numbers).
-     *
-     * Employs "folding", as described at
-     * {@link 
http://www.cosic.esat.kuleuven.be/publications/thesis-149.pdf#page=66 
thesis-149.pdf#page=66}.  To quote from
-     * it, "the idea [behind folding] is to find a value x' such that x (mod 
m) = x' (mod m), with x' being smaller than x."
-     *
-     * Unfortunately, the "Barrett Reduction with Folding" algorithm described 
in thesis-149.pdf is not, as written, all that
-     * usable on account of (1) its not using reasonable radix points as 
discussed in
-     * {@link http://math.libtomcrypt.com/files/tommath.pdf#page=162 MPM 
6.2.2} and (2) the fact that, even with reasonable
-     * radix points, it only works when there are an even number of digits in 
the denominator.  The reason for (2) is that
-     * (x >> 1) + (x >> 1) != x / 2 + x / 2.  If x is even, they're the same, 
but if x is odd, they're not.  See the in-line
-     * comments for details.
-     *
-     * @see _slidingWindow()
-     * @access private
-     * @param Array $n
-     * @param Array $m
-     * @return Array
-     */
-    function _barrett($n, $m)
-    {
-        static $cache = array(
-            MATH_BIGINTEGER_VARIABLE => array(),
-            MATH_BIGINTEGER_DATA => array()
-        );
-
-        $m_length = count($m);
-
-        // if ($this->_compare($n, $this->_square($m)) >= 0) {
-        if (count($n) > 2 * $m_length) {
-            $lhs = new Math_BigInteger();
-            $rhs = new Math_BigInteger();
-            $lhs->value = $n;
-            $rhs->value = $m;
-            list(, $temp) = $lhs->divide($rhs);
-            return $temp->value;
-        }
-
-        // if (m.length >> 1) + 2 <= m.length then m is too small and n can't 
be reduced
-        if ($m_length < 5) {
-            return $this->_regularBarrett($n, $m);
-        }
-
-        // n = 2 * m.length
-
-        if ( ($key = array_search($m, $cache[MATH_BIGINTEGER_VARIABLE])) === 
false ) {
-            $key = count($cache[MATH_BIGINTEGER_VARIABLE]);
-            $cache[MATH_BIGINTEGER_VARIABLE][] = $m;
-
-            $lhs = new Math_BigInteger();
-            $lhs_value = &$lhs->value;
-            $lhs_value = $this->_array_repeat(0, $m_length + ($m_length >> 1));
-            $lhs_value[] = 1;
-            $rhs = new Math_BigInteger();
-            $rhs->value = $m;
-
-            list($u, $m1) = $lhs->divide($rhs);
-            $u = $u->value;
-            $m1 = $m1->value;
-
-            $cache[MATH_BIGINTEGER_DATA][] = array(
-                'u' => $u, // m.length >> 1 (technically (m.length >> 1) + 1)
-                'm1'=> $m1 // m.length
-            );
-        } else {
-            extract($cache[MATH_BIGINTEGER_DATA][$key]);
-        }
-
-        $cutoff = $m_length + ($m_length >> 1);
-        $lsd = array_slice($n, 0, $cutoff); // m.length + (m.length >> 1)
-        $msd = array_slice($n, $cutoff);    // m.length >> 1
-        $lsd = $this->_trim($lsd);
-        $temp = $this->_multiply($msd, false, $m1, false);
-        $n = $this->_add($lsd, false, $temp[MATH_BIGINTEGER_VALUE], false); // 
m.length + (m.length >> 1) + 1
-
-        if ($m_length & 1) {
-            return $this->_regularBarrett($n[MATH_BIGINTEGER_VALUE], $m);
-        }
-
-        // (m.length + (m.length >> 1) + 1) - (m.length - 1) == (m.length >> 
1) + 2
-        $temp = array_slice($n[MATH_BIGINTEGER_VALUE], $m_length - 1);
-        // if even: ((m.length >> 1) + 2) + (m.length >> 1) == m.length + 2
-        // if odd:  ((m.length >> 1) + 2) + (m.length >> 1) == (m.length - 1) 
+ 2 == m.length + 1
-        $temp = $this->_multiply($temp, false, $u, false);
-        // if even: (m.length + 2) - ((m.length >> 1) + 1) = m.length - 
(m.length >> 1) + 1
-        // if odd:  (m.length + 1) - ((m.length >> 1) + 1) = m.length - 
(m.length >> 1)
-        $temp = array_slice($temp[MATH_BIGINTEGER_VALUE], ($m_length >> 1) + 
1);
-        // if even: (m.length - (m.length >> 1) + 1) + m.length = 2 * m.length 
- (m.length >> 1) + 1
-        // if odd:  (m.length - (m.length >> 1)) + m.length     = 2 * m.length 
- (m.length >> 1)
-        $temp = $this->_multiply($temp, false, $m, false);
-
-        // at this point, if m had an odd number of digits, we'd be 
subtracting a 2 * m.length - (m.length >> 1) digit
-        // number from a m.length + (m.length >> 1) + 1 digit number.  ie. 
there'd be an extra digit and the while loop
-        // following this comment would loop a lot (hence our calling 
_regularBarrett() in that situation).
-
-        $result = $this->_subtract($n[MATH_BIGINTEGER_VALUE], false, 
$temp[MATH_BIGINTEGER_VALUE], false);
-
-        while ($this->_compare($result[MATH_BIGINTEGER_VALUE], 
$result[MATH_BIGINTEGER_SIGN], $m, false) >= 0) {
-            $result = $this->_subtract($result[MATH_BIGINTEGER_VALUE], 
$result[MATH_BIGINTEGER_SIGN], $m, false);
-        }
-
-        return $result[MATH_BIGINTEGER_VALUE];
-    }
-
-    /**
-     * (Regular) Barrett Modular Reduction
-     *
-     * For numbers with more than four digits Math_BigInteger::_barrett() is 
faster.  The difference between that and this
-     * is that this function does not fold the denominator into a smaller form.
-     *
-     * @see _slidingWindow()
-     * @access private
-     * @param Array $x
-     * @param Array $n
-     * @return Array
-     */
-    function _regularBarrett($x, $n)
-    {
-        static $cache = array(
-            MATH_BIGINTEGER_VARIABLE => array(),
-            MATH_BIGINTEGER_DATA => array()
-        );
-
-        $n_length = count($n);
-
-        if (count($x) > 2 * $n_length) {
-            $lhs = new Math_BigInteger();
-            $rhs = new Math_BigInteger();
-            $lhs->value = $x;
-            $rhs->value = $n;
-            list(, $temp) = $lhs->divide($rhs);
-            return $temp->value;
-        }
-
-        if ( ($key = array_search($n, $cache[MATH_BIGINTEGER_VARIABLE])) === 
false ) {
-            $key = count($cache[MATH_BIGINTEGER_VARIABLE]);
-            $cache[MATH_BIGINTEGER_VARIABLE][] = $n;
-            $lhs = new Math_BigInteger();
-            $lhs_value = &$lhs->value;
-            $lhs_value = $this->_array_repeat(0, 2 * $n_length);
-            $lhs_value[] = 1;
-            $rhs = new Math_BigInteger();
-            $rhs->value = $n;
-            list($temp, ) = $lhs->divide($rhs); // m.length
-            $cache[MATH_BIGINTEGER_DATA][] = $temp->value;
-        }
-
-        // 2 * m.length - (m.length - 1) = m.length + 1
-        $temp = array_slice($x, $n_length - 1);
-        // (m.length + 1) + m.length = 2 * m.length + 1
-        $temp = $this->_multiply($temp, false, 
$cache[MATH_BIGINTEGER_DATA][$key], false);
-        // (2 * m.length + 1) - (m.length - 1) = m.length + 2
-        $temp = array_slice($temp[MATH_BIGINTEGER_VALUE], $n_length + 1);
-
-        // m.length + 1
-        $result = array_slice($x, 0, $n_length + 1);
-        // m.length + 1
-        $temp = $this->_multiplyLower($temp, false, $n, false, $n_length + 1);
-        // $temp == array_slice($temp->_multiply($temp, false, $n, 
false)->value, 0, $n_length + 1)
-
-        if ($this->_compare($result, false, $temp[MATH_BIGINTEGER_VALUE], 
$temp[MATH_BIGINTEGER_SIGN]) < 0) {
-            $corrector_value = $this->_array_repeat(0, $n_length + 1);
-            $corrector_value[] = 1;
-            $result = $this->_add($result, false, $corrector, false);
-            $result = $result[MATH_BIGINTEGER_VALUE];
-        }
-
-        // at this point, we're subtracting a number with m.length + 1 digits 
from another number with m.length + 1 digits
-        $result = $this->_subtract($result, false, 
$temp[MATH_BIGINTEGER_VALUE], $temp[MATH_BIGINTEGER_SIGN]);
-        while ($this->_compare($result[MATH_BIGINTEGER_VALUE], 
$result[MATH_BIGINTEGER_SIGN], $n, false) > 0) {
-            $result = $this->_subtract($result[MATH_BIGINTEGER_VALUE], 
$result[MATH_BIGINTEGER_SIGN], $n, false);
-        }
-
-        return $result[MATH_BIGINTEGER_VALUE];
-    }
-
-    /**
-     * Performs long multiplication up to $stop digits
-     *
-     * If you're going to be doing array_slice($product->value, 0, $stop), 
some cycles can be saved.
-     *
-     * @see _regularBarrett()
-     * @param Array $x_value
-     * @param Boolean $x_negative
-     * @param Array $y_value
-     * @param Boolean $y_negative
-     * @return Array
-     * @access private
-     */
-    function _multiplyLower($x_value, $x_negative, $y_value, $y_negative, 
$stop)
-    {
-        $x_length = count($x_value);
-        $y_length = count($y_value);
-
-        if ( !$x_length || !$y_length ) { // a 0 is being multiplied
-            return array(
-                MATH_BIGINTEGER_VALUE => array(),
-                MATH_BIGINTEGER_SIGN => false
-            );
-        }
-
-        if ( $x_length < $y_length ) {
-            $temp = $x_value;
-            $x_value = $y_value;
-            $y_value = $temp;
-
-            $x_length = count($x_value);
-            $y_length = count($y_value);
-        }
-
-        $product_value = $this->_array_repeat(0, $x_length + $y_length);
-
-        // the following for loop could be removed if the for loop following it
-        // (the one with nested for loops) initially set $i to 0, but
-        // doing so would also make the result in one set of unnecessary adds,
-        // since on the outermost loops first pass, $product->value[$k] is 
going
-        // to always be 0
-
-        $carry = 0;
-
-        for ($j = 0; $j < $x_length; ++$j) { // ie. $i = 0, $k = $i
-            $temp = $x_value[$j] * $y_value[0] + $carry; // $product_value[$k] 
== 0
-            $carry = (int) ($temp / 0x4000000);
-            $product_value[$j] = (int) ($temp - 0x4000000 * $carry);
-        }
-
-        if ($j < $stop) {
-            $product_value[$j] = $carry;
-        }
-
-        // the above for loop is what the previous comment was talking about.  
the
-        // following for loop is the "one with nested for loops"
-
-        for ($i = 1; $i < $y_length; ++$i) {
-            $carry = 0;
-
-            for ($j = 0, $k = $i; $j < $x_length && $k < $stop; ++$j, ++$k) {
-                $temp = $product_value[$k] + $x_value[$j] * $y_value[$i] + 
$carry;
-                $carry = (int) ($temp / 0x4000000);
-                $product_value[$k] = (int) ($temp - 0x4000000 * $carry);
-            }
-
-            if ($k < $stop) {
-                $product_value[$k] = $carry;
-            }
-        }
-
-        return array(
-            MATH_BIGINTEGER_VALUE => $this->_trim($product_value),
-            MATH_BIGINTEGER_SIGN => $x_negative != $y_negative
-        );
-    }
-
-    /**
-     * Montgomery Modular Reduction
-     *
-     * ($x->_prepMontgomery($n))->_montgomery($n) yields $x % $n.
-     * {@link http://math.libtomcrypt.com/files/tommath.pdf#page=170 MPM 6.3} 
provides insights on how this can be
-     * improved upon (basically, by using the comba method).  gcd($n, 2) must 
be equal to one for this function
-     * to work correctly.
-     *
-     * @see _prepMontgomery()
-     * @see _slidingWindow()
-     * @access private
-     * @param Array $x
-     * @param Array $n
-     * @return Array
-     */
-    function _montgomery($x, $n)
-    {
-        static $cache = array(
-            MATH_BIGINTEGER_VARIABLE => array(),
-            MATH_BIGINTEGER_DATA => array()
-        );
-
-        if ( ($key = array_search($n, $cache[MATH_BIGINTEGER_VARIABLE])) === 
false ) {
-            $key = count($cache[MATH_BIGINTEGER_VARIABLE]);
-            $cache[MATH_BIGINTEGER_VARIABLE][] = $x;
-            $cache[MATH_BIGINTEGER_DATA][] = $this->_modInverse67108864($n);
-        }
-
-        $k = count($n);
-
-        $result = array(MATH_BIGINTEGER_VALUE => $x);
-
-        for ($i = 0; $i < $k; ++$i) {
-            $temp = $result[MATH_BIGINTEGER_VALUE][$i] * 
$cache[MATH_BIGINTEGER_DATA][$key];
-            $temp = (int) ($temp - 0x4000000 * ((int) ($temp / 0x4000000)));
-            $temp = $this->_regularMultiply(array($temp), $n);
-            $temp = array_merge($this->_array_repeat(0, $i), $temp);
-            $result = $this->_add($result[MATH_BIGINTEGER_VALUE], false, 
$temp, false);
-        }
-
-        $result[MATH_BIGINTEGER_VALUE] = 
array_slice($result[MATH_BIGINTEGER_VALUE], $k);
-
-        if ($this->_compare($result, false, $n, false) >= 0) {
-            $result = $this->_subtract($result[MATH_BIGINTEGER_VALUE], false, 
$n, false);
-        }
-
-        return $result[MATH_BIGINTEGER_VALUE];
-    }
-
-    /**
-     * Montgomery Multiply
-     *
-     * Interleaves the montgomery reduction and long multiplication algorithms 
together as described in 
-     * {@link http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf#page=13 
HAC 14.36}
-     *
-     * @see _prepMontgomery()
-     * @see _montgomery()
-     * @access private
-     * @param Array $x
-     * @param Array $y
-     * @param Array $m
-     * @return Array
-     */
-    function _montgomeryMultiply($x, $y, $m)
-    {
-        $temp = $this->_multiply($x, false, $y, false);
-        return $this->_montgomery($temp[MATH_BIGINTEGER_VALUE], $m);
-
-        static $cache = array(
-            MATH_BIGINTEGER_VARIABLE => array(),
-            MATH_BIGINTEGER_DATA => array()
-        );
-
-        if ( ($key = array_search($m, $cache[MATH_BIGINTEGER_VARIABLE])) === 
false ) {
-            $key = count($cache[MATH_BIGINTEGER_VARIABLE]);
-            $cache[MATH_BIGINTEGER_VARIABLE][] = $m;
-            $cache[MATH_BIGINTEGER_DATA][] = $this->_modInverse67108864($m);
-        }
-
-        $n = max(count($x), count($y), count($m));
-        $x = array_pad($x, $n, 0);
-        $y = array_pad($y, $n, 0);
-        $m = array_pad($m, $n, 0);
-        $a = array(MATH_BIGINTEGER_VALUE => $this->_array_repeat(0, $n + 1));
-        for ($i = 0; $i < $n; ++$i) {
-            $temp = $a[MATH_BIGINTEGER_VALUE][0] + $x[$i] * $y[0];
-            $temp = (int) ($temp - 0x4000000 * ((int) ($temp / 0x4000000)));
-            $temp = $temp * $cache[MATH_BIGINTEGER_DATA][$key];
-            $temp = (int) ($temp - 0x4000000 * ((int) ($temp / 0x4000000)));
-            $temp = $this->_add($this->_regularMultiply(array($x[$i]), $y), 
false, $this->_regularMultiply(array($temp), $m), false);
-            $a = $this->_add($a[MATH_BIGINTEGER_VALUE], false, 
$temp[MATH_BIGINTEGER_VALUE], false);
-            $a[MATH_BIGINTEGER_VALUE] = array_slice($a[MATH_BIGINTEGER_VALUE], 
1);
-        }
-        if ($this->_compare($a[MATH_BIGINTEGER_VALUE], false, $m, false) >= 0) 
{
-            $a = $this->_subtract($a[MATH_BIGINTEGER_VALUE], false, $m, false);
-        }
-        return $a[MATH_BIGINTEGER_VALUE];
-    }
-
-    /**
-     * Prepare a number for use in Montgomery Modular Reductions
-     *
-     * @see _montgomery()
-     * @see _slidingWindow()
-     * @access private
-     * @param Array $x
-     * @param Array $n
-     * @return Array
-     */
-    function _prepMontgomery($x, $n)
-    {
-        $lhs = new Math_BigInteger();
-        $lhs->value = array_merge($this->_array_repeat(0, count($n)), $x);
-        $rhs = new Math_BigInteger();
-        $rhs->value = $n;
-
-        list(, $temp) = $lhs->divide($rhs);
-        return $temp->value;
-    }
-
-    /**
-     * Modular Inverse of a number mod 2**26 (eg. 67108864)
-     *
-     * Based off of the bnpInvDigit function implemented and justified in the 
following URL:
-     *
-     * {@link http://www-cs-students.stanford.edu/~tjw/jsbn/jsbn.js}
-     *
-     * The following URL provides more info:
-     *
-     * {@link http://groups.google.com/group/sci.crypt/msg/7a137205c1be7d85}
-     *
-     * As for why we do all the bitmasking...  strange things can happen when 
converting from floats to ints. For
-     * instance, on some computers, var_dump((int) -4294967297) yields int(-1) 
and on others, it yields 
-     * int(-2147483648).  To avoid problems stemming from this, we use 
bitmasks to guarantee that ints aren't
-     * auto-converted to floats.  The outermost bitmask is present because 
without it, there's no guarantee that
-     * the "residue" returned would be the so-called "common residue".  We use 
fmod, in the last step, because the
-     * maximum possible $x is 26 bits and the maximum $result is 16 bits.  
Thus, we have to be able to handle up to
-     * 40 bits, which only 64-bit floating points will support.
-     *
-     * Thanks to Pedro Gimeno Fortea for input!
-     *
-     * @see _montgomery()
-     * @access private
-     * @param Array $x
-     * @return Integer
-     */
-    function _modInverse67108864($x) // 2**26 == 67108864
-    {
-        $x = -$x[0];
-        $result = $x & 0x3; // x**-1 mod 2**2
-        $result = ($result * (2 - $x * $result)) & 0xF; // x**-1 mod 2**4
-        $result = ($result * (2 - ($x & 0xFF) * $result))  & 0xFF; // x**-1 
mod 2**8
-        $result = ($result * ((2 - ($x & 0xFFFF) * $result) & 0xFFFF)) & 
0xFFFF; // x**-1 mod 2**16
-        $result = fmod($result * (2 - fmod($x * $result, 0x4000000)), 
0x4000000); // x**-1 mod 2**26
-        return $result & 0x3FFFFFF;
-    }
-
-    /**
-     * Calculates modular inverses.
-     *
-     * Say you have (30 mod 17 * x mod 17) mod 17 == 1.  x can be found using 
modular inverses.
-     *
-     * Here's an example:
-     * <code>
-     * <?php
-     *    include('Math/BigInteger.php');
-     *
-     *    $a = new Math_BigInteger(30);
-     *    $b = new Math_BigInteger(17);
-     *
-     *    $c = $a->modInverse($b);
-     *    echo $c->toString(); // outputs 4
-     *
-     *    echo "\r\n";
-     *
-     *    $d = $a->multiply($c);
-     *    list(, $d) = $d->divide($b);
-     *    echo $d; // outputs 1 (as per the definition of modular inverse)
-     * ?>
-     * </code>
-     *
-     * @param Math_BigInteger $n
-     * @return mixed false, if no modular inverse exists, Math_BigInteger, 
otherwise.
-     * @access public
-     * @internal See {@link 
http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf#page=21 HAC 14.64} for 
more information.
-     */
-    function modInverse($n)
-    {
-        switch ( MATH_BIGINTEGER_MODE ) {
-            case MATH_BIGINTEGER_MODE_GMP:
-                $temp = new Math_BigInteger();
-                $temp->value = gmp_invert($this->value, $n->value);
-
-                return ( $temp->value === false ) ? false : 
$this->_normalize($temp);
-        }
-
-        static $zero, $one;
-        if (!isset($zero)) {
-            $zero = new Math_BigInteger();
-            $one = new Math_BigInteger(1);
-        }
-
-        // $x mod $n == $x mod -$n.
-        $n = $n->abs();
-
-        if ($this->compare($zero) < 0) {
-            $temp = $this->abs();
-            $temp = $temp->modInverse($n);
-            return $negated === false ? false : 
$this->_normalize($n->subtract($temp));
-        }
-
-        extract($this->extendedGCD($n));
-
-        if (!$gcd->equals($one)) {
-            return false;
-        }
-
-        $x = $x->compare($zero) < 0 ? $x->add($n) : $x;
-
-        return $this->compare($zero) < 0 ? $this->_normalize($n->subtract($x)) 
: $this->_normalize($x);
-    }
-
-    /**
-     * Calculates the greatest common divisor and Bézout's identity.
-     *
-     * Say you have 693 and 609.  The GCD is 21.  Bézout's identity states 
that there exist integers x and y such that
-     * 693*x + 609*y == 21.  In point of fact, there are actually an infinite 
number of x and y combinations and which
-     * combination is returned is dependant upon which mode is in use.  See
-     * {@link http://en.wikipedia.org/wiki/B%C3%A9zout%27s_identity Bézout's 
identity - Wikipedia} for more information.
-     *
-     * Here's an example:
-     * <code>
-     * <?php
-     *    include('Math/BigInteger.php');
-     *
-     *    $a = new Math_BigInteger(693);
-     *    $b = new Math_BigInteger(609);
-     *
-     *    extract($a->extendedGCD($b));
-     *
-     *    echo $gcd->toString() . "\r\n"; // outputs 21
-     *    echo $a->toString() * $x->toString() + $b->toString() * 
$y->toString(); // outputs 21
-     * ?>
-     * </code>
-     *
-     * @param Math_BigInteger $n
-     * @return Math_BigInteger
-     * @access public
-     * @internal Calculates the GCD using the binary xGCD algorithim described 
in
-     *    {@link 
http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf#page=19 HAC 14.61}.  As 
the text above 14.61 notes,
-     *    the more traditional algorithim requires "relatively costly 
multiple-precision divisions".
-     */
-    function extendedGCD($n)
-    {
-        switch ( MATH_BIGINTEGER_MODE ) {
-            case MATH_BIGINTEGER_MODE_GMP:
-                extract(gmp_gcdext($this->value, $n->value));
-
-                return array(
-                    'gcd' => $this->_normalize(new Math_BigInteger($g)),
-                    'x'   => $this->_normalize(new Math_BigInteger($s)),
-                    'y'   => $this->_normalize(new Math_BigInteger($t))
-                );
-            case MATH_BIGINTEGER_MODE_BCMATH:
-                // it might be faster to use the binary xGCD algorithim here, 
as well, but (1) that algorithim works
-                // best when the base is a power of 2 and (2) i don't think 
it'd make much difference, anyway.  as is,
-                // the basic extended euclidean algorithim is what we're using.
-
-                $u = $this->value;
-                $v = $n->value;
-
-                $a = '1';
-                $b = '0';
-                $c = '0';
-                $d = '1';
-
-                while (bccomp($v, '0', 0) != 0) {
-                    $q = bcdiv($u, $v, 0);
-
-                    $temp = $u;
-                    $u = $v;
-                    $v = bcsub($temp, bcmul($v, $q, 0), 0);
-
-                    $temp = $a;
-                    $a = $c;
-                    $c = bcsub($temp, bcmul($a, $q, 0), 0);
-
-                    $temp = $b;
-                    $b = $d;
-                    $d = bcsub($temp, bcmul($b, $q, 0), 0);
-                }
-
-                return array(
-                    'gcd' => $this->_normalize(new Math_BigInteger($u)),
-                    'x'   => $this->_normalize(new Math_BigInteger($a)),
-                    'y'   => $this->_normalize(new Math_BigInteger($b))
-                );
-        }
-
-        $y = $n->copy();
-        $x = $this->copy();
-        $g = new Math_BigInteger();
-        $g->value = array(1);
-
-        while ( !(($x->value[0] & 1)|| ($y->value[0] & 1)) ) {
-            $x->_rshift(1);
-            $y->_rshift(1);
-            $g->_lshift(1);
-        }
-
-        $u = $x->copy();
-        $v = $y->copy();
-
-        $a = new Math_BigInteger();
-        $b = new Math_BigInteger();
-        $c = new Math_BigInteger();
-        $d = new Math_BigInteger();
-
-        $a->value = $d->value = $g->value = array(1);
-        $b->value = $c->value = array();
-
-        while ( !empty($u->value) ) {
-            while ( !($u->value[0] & 1) ) {
-                $u->_rshift(1);
-                if ( (!empty($a->value) && ($a->value[0] & 1)) || 
(!empty($b->value) && ($b->value[0] & 1)) ) {
-                    $a = $a->add($y);
-                    $b = $b->subtract($x);
-                }
-                $a->_rshift(1);
-                $b->_rshift(1);
-            }
-
-            while ( !($v->value[0] & 1) ) {
-                $v->_rshift(1);
-                if ( (!empty($d->value) && ($d->value[0] & 1)) || 
(!empty($c->value) && ($c->value[0] & 1)) ) {
-                    $c = $c->add($y);
-                    $d = $d->subtract($x);
-                }
-                $c->_rshift(1);
-                $d->_rshift(1);
-            }
-
-            if ($u->compare($v) >= 0) {
-                $u = $u->subtract($v);
-                $a = $a->subtract($c);
-                $b = $b->subtract($d);
-            } else {
-                $v = $v->subtract($u);
-                $c = $c->subtract($a);
-                $d = $d->subtract($b);
-            }
-        }
-
-        return array(
-            'gcd' => $this->_normalize($g->multiply($v)),
-            'x'   => $this->_normalize($c),
-            'y'   => $this->_normalize($d)
-        );
-    }
-
-    /**
-     * Calculates the greatest common divisor
-     *
-     * Say you have 693 and 609.  The GCD is 21.
-     *
-     * Here's an example:
-     * <code>
-     * <?php
-     *    include('Math/BigInteger.php');
-     *
-     *    $a = new Math_BigInteger(693);
-     *    $b = new Math_BigInteger(609);
-     *
-     *    $gcd = a->extendedGCD($b);
-     *
-     *    echo $gcd->toString() . "\r\n"; // outputs 21
-     * ?>
-     * </code>
-     *
-     * @param Math_BigInteger $n
-     * @return Math_BigInteger
-     * @access public
-     */
-    function gcd($n)
-    {
-        extract($this->extendedGCD($n));
-        return $gcd;
-    }
-
-    /**
-     * Absolute value.
-     *
-     * @return Math_BigInteger
-     * @access public
-     */
-    function abs()
-    {
-        $temp = new Math_BigInteger();
-
-        switch ( MATH_BIGINTEGER_MODE ) {
-            case MATH_BIGINTEGER_MODE_GMP:
-                $temp->value = gmp_abs($this->value);
-                break;
-            case MATH_BIGINTEGER_MODE_BCMATH:
-                $temp->value = (bccomp($this->value, '0', 0) < 0) ? 
substr($this->value, 1) : $this->value;
-                break;
-            default:

[... 4822 lines stripped ...]

Reply via email to