github-actions[bot] opened a new issue, #240: URL: https://github.com/apache/incubator-wayang/issues/240
Here we are temporarily assuming that the user is exclusively sending UTF8. User has several types out_iter = batched(func(iterator)) On most of IPv6-ready systems, IPv6 will take precedence. https://github.com/apache/incubator-wayang/blob/d859a97d43a8c3c3c964150eaff8f3833e41ea75/python/src/pywy/platforms/jvm/worker.py#L334 ```python # # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os import socket import struct import pickle from itertools import chain import cloudpickle import base64 import re import sys import time class SpecialLengths(object): END_OF_DATA_SECTION = -1 PYTHON_EXCEPTION_THROWN = -2 TIMING_DATA = -3 END_OF_STREAM = -4 NULL = -5 START_ARROW_STREAM = -6 def read_int(stream): length = stream.read(4) if not length: raise EOFError res = struct.unpack("!i", length)[0] return res class UTF8Deserializer: """ Deserializes streams written by String.getBytes. """ def __init__(self, use_unicode=True): self.use_unicode = use_unicode def loads(self, stream): length = read_int(stream) if length == SpecialLengths.END_OF_DATA_SECTION: raise EOFError elif length == SpecialLengths.NULL: return None s = stream.read(length) return s.decode("utf-8") if self.use_unicode else s def load_stream(self, stream): try: while True: yield self.loads(stream) except struct.error: return except EOFError: return def __repr__(self): return "UTF8Deserializer(%s)" % self.use_unicode def write_int(p, outfile): outfile.write(struct.pack("!i", p)) def write_with_length(obj, stream): serialized = obj.encode('utf-8') if serialized is None: raise ValueError("serialized value should not be None") if len(serialized) > (1 << 31): raise ValueError("can not serialize object larger than 2G") write_int(len(serialized), stream) stream.write(serialized) class Serializer: def dump_stream(self, iterator, stream): """ Serialize an iterator of objects to the output stream. """ raise NotImplementedError def load_stream(self, stream): """ Return an iterator of deserialized objects from the input stream. """ raise NotImplementedError def dumps(self, obj): """ Serialize an object into a byte array. When batching is used, this will be called with an array of objects. """ raise NotImplementedError def _load_stream_without_unbatching(self, stream): """ Return an iterator of deserialized batches (iterable) of objects from the input stream. If the serializer does not operate on batches the default implementation returns an iterator of single element lists. """ return map(lambda x: [x], self.load_stream(stream)) # Note: our notion of "equality" is that output generated by # equal serializers can be deserialized using the same serializer. # This default implementation handles the simple cases; # subclasses should override __eq__ as appropriate. def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not self.__eq__(other) def __repr__(self): return "%s()" % self.__class__.__name__ def __hash__(self): return hash(str(self)) class FramedSerializer(Serializer): """ Serializer that writes objects as a stream of (length, data) pairs, where `length` is a 32-bit integer and data is `length` bytes. """ def dump_stream(self, iterator, stream): for obj in iterator: self._write_with_length(obj, stream) def load_stream(self, stream): while True: try: yield self._read_with_length(stream) except EOFError: return def _write_with_length(self, obj, stream): serialized = self.dumps(obj) if serialized is None: raise ValueError("serialized value should not be None") if len(serialized) > (1 << 31): raise ValueError("can not serialize object larger than 2G") write_int(len(serialized), stream) stream.write(serialized) def _read_with_length(self, stream): length = read_int(stream) if length == SpecialLengths.END_OF_DATA_SECTION: raise EOFError elif length == SpecialLengths.NULL: return None obj = stream.read(length) if len(obj) < length: raise EOFError return self.loads(obj) def dumps(self, obj): """ Serialize an object into a byte array. When batching is used, this will be called with an array of objects. """ raise NotImplementedError def loads(self, obj): """ Deserialize an object from a byte array. """ raise NotImplementedError class BatchedSerializer(Serializer): """ Serializes a stream of objects in batches by calling its wrapped Serializer with streams of objects. """ UNLIMITED_BATCH_SIZE = -1 UNKNOWN_BATCH_SIZE = 0 def __init__(self, serializer, batchSize=UNLIMITED_BATCH_SIZE): self.serializer = serializer self.batchSize = batchSize def _batched(self, iterator): if self.batchSize == self.UNLIMITED_BATCH_SIZE: print("hahahhaha") yield list(iterator) elif hasattr(iterator, "__len__") and hasattr(iterator, "__getslice__"): n = len(iterator) for i in range(0, n, self.batchSize): toc = time.perf_counter() print(f"batched toc1={toc:0.4f}") yield iterator[i : i + self.batchSize] else: items = [] count = 0 for item in iterator: items.append(item) count += 1 if count == self.batchSize: yield items items = [] count = 0 if items: yield items def dump_stream(self, iterator, stream): self.serializer.dump_stream(self._batched(iterator), stream) def load_stream(self, stream): return chain.from_iterable(self._load_stream_without_unbatching(stream)) def _load_stream_without_unbatching(self, stream): return self.serializer.load_stream(stream) def __repr__(self): return "BatchedSerializer(%s, %d)" % (str(self.serializer), self.batchSize) class PickleSerializer(FramedSerializer): """ Serializes objects using Python's pickle serializer: http://docs.python.org/2/library/pickle.html This serializer supports nearly any Python object, but may not be as fast as more specialized serializers. """ def dumps(self, obj): return pickle.dumps(obj, pickle_protocol) def loads(self, obj, encoding="bytes"): return pickle.loads(obj, encoding=encoding) pickle_protocol = pickle.HIGHEST_PROTOCOL class CloudPickleSerializer(FramedSerializer): def dumps(self, obj): try: return cloudpickle.dumps(obj, pickle_protocol) except pickle.PickleError: raise except Exception as e: emsg = str(e) if "'i' format requires" in emsg: msg = "Object too large to serialize: %s" % emsg else: msg = "Could not serialize object: %s: %s" % (e.__class__.__name__, emsg) # print_exec(sys.stderr) raise pickle.PicklingError(msg) def loads(self, obj, encoding="bytes"): return cloudpickle.loads(obj, encoding=encoding) #if sys.version_info < (3, 8): CPickleSerializer = PickleSerializer #else: # CPickleSerializer = CloudPickleSerializer def dump_stream(iterator, stream): for obj in iterator: if type(obj) is str: print("here?2") write_with_length(obj, stream) ## elif type(obj) is list: ## write_with_length(obj, stream) print("Termine") write_int(SpecialLengths.END_OF_DATA_SECTION, stream) print("Escribi Fin") def process(infile, outfile): """udf64 = os.environ["UDF"] print("udf64") print(udf64) #serialized_udf = binascii.a2b_base64(udf64) #serialized_udf = base64.b64decode(udf64) serialized_udf = bytearray(udf64, encoding='utf-16') # NOT VALID TO BE UTF8 serialized_udf = bytes(udf64, 'UTF-8') print("serialized_udf") print(serialized_udf) # input to be ast.literal_eval(serialized_udf) func = pickle.loads(serialized_udf, encoding="bytes") print ("func") print (func) print(func([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])) # func([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])""" # TODO First we must receive the operator + UDF """udf = lambda elem: elem.lower() def func(it): return sorted(it, key=udf)""" udf_length = read_int(infile) print("udf_length") print(udf_length) serialized_udf = infile.read(udf_length) print("serialized_udf") print(serialized_udf) #base64_message = base64.b64decode(serialized_udf + "===") #print("base64_message") #print(base64_message) func = pickle.loads(serialized_udf) #func = ori.lala(serialized_udf) #print (func) #for x in func([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]): print(x) """print("example") for x in func("2344|234|efrf|$#|ffrf"): print(x)""" # TODO Here we are temporarily assuming that the user is exclusively sending UTF8. User has several types iterator = UTF8Deserializer().load_stream(infile) # out_iter = sorted(iterator, key=lambda elem: elem.lower()) # out_iter = batched(func(iterator)) ser = BatchedSerializer(CPickleSerializer(), 100) ser.dump_stream(func(iterator), outfile) #dump_stream(iterator=out_iter, stream=outfile) def local_connect(port): sock = None errors = [] # Support for both IPv4 and IPv6. # On most of IPv6-ready systems, IPv6 will take precedence. for res in socket.getaddrinfo("127.0.0.1", port, socket.AF_UNSPEC, socket.SOCK_STREAM): af, socktype, proto, _, sa = res try: sock = socket.socket(af, socktype, proto) # sock.settimeout(int(os.environ.get("SPARK_AUTH_SOCKET_TIMEOUT", 15))) sock.settimeout(30) sock.connect(sa) # sockfile = sock.makefile("rwb", int(os.environ.get("SPARK_BUFFER_SIZE", 65536))) sockfile = sock.makefile("rwb", 65536) # _do_server_auth(sockfile, auth_secret) return (sockfile, sock) except socket.error as e: emsg = str(e) errors.append("tried to connect to %s, but an error occurred: %s" % (sa, emsg)) sock.close() sock = None raise Exception("could not open socket: %s" % errors) if __name__ == '__main__': print("Python version") print (sys.version) java_port = int(os.environ["PYTHON_WORKER_FACTORY_PORT"]) sock_file, sock = local_connect(java_port) process(sock_file, sock_file) sock_file.flush() exit() ``` a7989c6c2bf9072b3fe883701292f21a021f90c7 -- This is an automated message from the Apache Git Service. To respond to the message, please log on to GitHub and use the URL above to go to the specific comment. To unsubscribe, e-mail: [email protected] For queries about this service, please contact Infrastructure at: [email protected]
