Dear Wiki user, You have subscribed to a wiki page or wiki category on "Hadoop Wiki" for change notification.
The "PoweredBy" page has been changed by prosch. http://wiki.apache.org/hadoop/PoweredBy?action=diff&rev1=273&rev2=274 -------------------------------------------------- * Our clusters vary from 10 to 500 nodes * Hypertable is also supported by Baidu - * [[http://www.beebler.com|Beebler]] + * [[http://www.beebler.com|Beebler]] [[http://technischeuebersetzung.mojblog.hr/|Blog]] * 14 node cluster (each node has: 2 dual core CPUs, 2TB storage, 8GB RAM) * We use hadoop for matching dating profiles @@ -511, +511 @@ = U = * [[http://glud.udistrital.edu.co|Universidad Distrital Francisco Jose de Caldas (Grupo GICOGE/Grupo Linux UD GLUD/Grupo GIGA]] - . 5 node low-profile cluster. We use Hadoop to support the research project: Territorial Intelligence System of Bogota City. + . 5 node low-profile cluster. We use Hadoop to support the research project: Territorial Intelligence System of Bogota City.[[http://prosch.blog.de/ + |Übersetzung]] * [[http://ir.dcs.gla.ac.uk/terrier/|University of Glasgow - Terrier Team]] * 30 nodes cluster (Xeon Quad Core 2.4GHz, 4GB RAM, 1TB/node storage). @@ -543, +544 @@ * [[http://www.web-alliance.fr|Web Alliance]] * We use Hadoop for our internal search engine optimization (SEO) tools. It allows us to store, index, search data in a much faster way. * We also use it for logs analysis and trends prediction. - * [[http://www.worldlingo.com/|WorldLingo]] + * [[http://www.worldlingo.com/|WorldLingo]] [[http://uebersetzer1.wordpress.com/|Wordpress]] * Hardware: 44 servers (each server has: 2 dual core CPUs, 2TB storage, 8GB RAM) * Each server runs Xen with one Hadoop/HBase instance and another instance with web or application servers, giving us 88 usable virtual machines. * We run two separate Hadoop/HBase clusters with 22 nodes each. @@ -562, +563 @@ * >60% of Hadoop Jobs within Yahoo are Pig jobs. = Z = - * [[http://www.zvents.com/|Zvents]] + * [[http://www.zvents.com/|Zvents]] * 10 node cluster (Dual-Core AMD Opteron 2210, 4GB RAM, 1TB/node storage) * Run Naive Bayes classifiers in parallel over crawl data to discover event information
