[ 
https://issues.apache.org/jira/browse/HADOOP-17377?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Brandon updated HADOOP-17377:
-----------------------------
    Description: 
*Summary*
 The MSI token provider fetches auth tokens from the local instance metadata 
service.
 The instance metadata service documentation states a limit of 5 requests per 
second: 
[https://docs.microsoft.com/en-us/azure/virtual-machines/windows/instance-metadata-service#error-and-debugging]
 which is fairly low.

Using ABFS and the MSI token provider, especially when used from multiple 
threads, ABFS frequently throws HTTP429 throttled exception. The implementation 
for fetching a token from MSI uses ExponentialRetryPolicy, however 
ExponentialRetryPolicy does not retry on status code 429, from my read of the 
code.

So an initial idea is that the ExponentialRetryPolicy could retry HTTP429 
errors.

Another potential enhancement, though more complicated, is to use a static 
cache for the MSI tokens. The cache would be shared by all threads in the JVM.

*Environment*
 This is in the context of Spark clusters running on Azure Virtual Machine 
Scale Sets. The Virtual Machine Scale Set is configured with a user-assigned 
identity. The Spark cluster is configured to download application JARs from an 
`abfs://` path, and auth to the storage account with the MSI token provider. 
The Spark version is 2.4.4. Hadoop libraries are version 3.2.1. More details on 
the Spark configuration: each VM runs 3 executor processes, and each executor 
process uses 5 cores. So on each VM, I expect maybe up to 15 rapid requests to 
the instance metadata service when the executor is starting up and fetching the 
JAR.

*Impact*
 In my particular use case, the download operation itself is wrapped with 3 
additional retries. I have never seen the download cause all the tries to be 
exhausted and fail. In the end, it seems to contribute mostly noise and 
slowness from the retries. However, having the HTTP429 handled robustly in the 
ABFS implementation would help application developers succeed and write cleaner 
code without wrapping individual ABFS operations with retries.

*Example*
 Here's an example error message and stack trace. It's always the same stack 
trace. This appears in my logs a few hundred to low thousands of times a day.
{noformat}
AADToken: HTTP connection failed for getting token from AzureAD. Http response: 
429 null
Content-Type: application/json; charset=utf-8 Content-Length: 90 Request ID:  
Proxies: none
First 1K of Body: {"error":"invalid_request","error_description":"Temporarily 
throttled, too many requests"}
        at 
org.apache.hadoop.fs.azurebfs.services.AbfsRestOperation.executeHttpOperation(AbfsRestOperation.java:190)
        at 
org.apache.hadoop.fs.azurebfs.services.AbfsRestOperation.execute(AbfsRestOperation.java:125)
        at 
org.apache.hadoop.fs.azurebfs.services.AbfsClient.getAclStatus(AbfsClient.java:506)
        at 
org.apache.hadoop.fs.azurebfs.services.AbfsClient.getAclStatus(AbfsClient.java:489)
        at 
org.apache.hadoop.fs.azurebfs.AzureBlobFileSystemStore.getIsNamespaceEnabled(AzureBlobFileSystemStore.java:208)
        at 
org.apache.hadoop.fs.azurebfs.AzureBlobFileSystemStore.getFileStatus(AzureBlobFileSystemStore.java:473)
        at 
org.apache.hadoop.fs.azurebfs.AzureBlobFileSystem.getFileStatus(AzureBlobFileSystem.java:437)
        at org.apache.hadoop.fs.FileSystem.isFile(FileSystem.java:1717)
        at org.apache.spark.util.Utils$.fetchHcfsFile(Utils.scala:747)
        at org.apache.spark.util.Utils$.doFetchFile(Utils.scala:724)
        at org.apache.spark.util.Utils$.fetchFile(Utils.scala:496)
        at 
org.apache.spark.executor.Executor.$anonfun$updateDependencies$7(Executor.scala:812)
        at 
org.apache.spark.executor.Executor.$anonfun$updateDependencies$7$adapted(Executor.scala:803)
        at 
scala.collection.TraversableLike$WithFilter.$anonfun$foreach$1(TraversableLike.scala:792)
        at 
scala.collection.mutable.HashMap.$anonfun$foreach$1(HashMap.scala:149)
        at scala.collection.mutable.HashTable.foreachEntry(HashTable.scala:237)
        at scala.collection.mutable.HashTable.foreachEntry$(HashTable.scala:230)
        at scala.collection.mutable.HashMap.foreachEntry(HashMap.scala:44)
        at scala.collection.mutable.HashMap.foreach(HashMap.scala:149)
        at 
scala.collection.TraversableLike$WithFilter.foreach(TraversableLike.scala:791)
        at 
org.apache.spark.executor.Executor.org$apache$spark$executor$Executor$$updateDependencies(Executor.scala:803)
        at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:375)
        at 
java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
        at 
java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
        at java.lang.Thread.run(Thread.java:748){noformat}
 CC [~mackrorysd], [[email protected]]

  was:
*Summary*
 The MSI token provider fetches auth tokens from the local instance metadata 
service.
 The instance metadata service documentation states a limit of 5 requests per 
second: 
[https://docs.microsoft.com/en-us/azure/virtual-machines/windows/instance-metadata-service#error-and-debugging]
 which is fairly low.

Using ABFS and the MSI token provider, especially when used from multiple 
threads, ABFS frequently throws HTTP429 throttled exception. The implementation 
for fetching a token from MSI uses ExponentialRetryPolicy, however 
ExponentialRetryPolicy does not retry on status code 429, from my read of the 
code.

So an initial idea is that the ExponentialRetryPolicy could retry HTTP429 
errors.

Another potential enhancement, though more complicated, is to use a static 
cache for the MSI tokens. The cache would be shared by all threads in the JVM.

*Environment*
 This is in the context of Spark clusters running on Azure Virtual Machine 
Scale Sets. The Virtual Machine Scale Set is configured with a user-assigned 
identity. The Spark cluster is configured to download application JARs from an 
`abfs://` path, and auth to the storage account with the MSI token provider. 
The Spark version is 2.4.4. Hadoop libraries are version 3.2.1. More details on 
the Spark configuration: each VM runs 3 executor processes, and each executor 
process uses 5 cores. So on each VM, I expect a maximum of 15 concurrent token 
fetches when the application is starting up and fetching its JAR.

*Impact*
 In my particular use case, the download operation itself is wrapped with 3 
additional retries. I have never seen the download cause all the tries to be 
exhausted and fail. In the end, it seems to contribute mostly noise and 
slowness from the retries. However, having the HTTP429 handled robustly in the 
ABFS implementation would help application developers succeed and write cleaner 
code without wrapping individual ABFS operations with retries.

*Example*
 Here's an example error message and stack trace. It's always the same stack 
trace. This appears in my logs a few hundred to low thousands of times a day.
{noformat}
AADToken: HTTP connection failed for getting token from AzureAD. Http response: 
429 null
Content-Type: application/json; charset=utf-8 Content-Length: 90 Request ID:  
Proxies: none
First 1K of Body: {"error":"invalid_request","error_description":"Temporarily 
throttled, too many requests"}
        at 
org.apache.hadoop.fs.azurebfs.services.AbfsRestOperation.executeHttpOperation(AbfsRestOperation.java:190)
        at 
org.apache.hadoop.fs.azurebfs.services.AbfsRestOperation.execute(AbfsRestOperation.java:125)
        at 
org.apache.hadoop.fs.azurebfs.services.AbfsClient.getAclStatus(AbfsClient.java:506)
        at 
org.apache.hadoop.fs.azurebfs.services.AbfsClient.getAclStatus(AbfsClient.java:489)
        at 
org.apache.hadoop.fs.azurebfs.AzureBlobFileSystemStore.getIsNamespaceEnabled(AzureBlobFileSystemStore.java:208)
        at 
org.apache.hadoop.fs.azurebfs.AzureBlobFileSystemStore.getFileStatus(AzureBlobFileSystemStore.java:473)
        at 
org.apache.hadoop.fs.azurebfs.AzureBlobFileSystem.getFileStatus(AzureBlobFileSystem.java:437)
        at org.apache.hadoop.fs.FileSystem.isFile(FileSystem.java:1717)
        at org.apache.spark.util.Utils$.fetchHcfsFile(Utils.scala:747)
        at org.apache.spark.util.Utils$.doFetchFile(Utils.scala:724)
        at org.apache.spark.util.Utils$.fetchFile(Utils.scala:496)
        at 
org.apache.spark.executor.Executor.$anonfun$updateDependencies$7(Executor.scala:812)
        at 
org.apache.spark.executor.Executor.$anonfun$updateDependencies$7$adapted(Executor.scala:803)
        at 
scala.collection.TraversableLike$WithFilter.$anonfun$foreach$1(TraversableLike.scala:792)
        at 
scala.collection.mutable.HashMap.$anonfun$foreach$1(HashMap.scala:149)
        at scala.collection.mutable.HashTable.foreachEntry(HashTable.scala:237)
        at scala.collection.mutable.HashTable.foreachEntry$(HashTable.scala:230)
        at scala.collection.mutable.HashMap.foreachEntry(HashMap.scala:44)
        at scala.collection.mutable.HashMap.foreach(HashMap.scala:149)
        at 
scala.collection.TraversableLike$WithFilter.foreach(TraversableLike.scala:791)
        at 
org.apache.spark.executor.Executor.org$apache$spark$executor$Executor$$updateDependencies(Executor.scala:803)
        at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:375)
        at 
java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
        at 
java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
        at java.lang.Thread.run(Thread.java:748){noformat}
 CC [~mackrorysd], [[email protected]]


> ABFS: Frequent HTTP429 exceptions with MSI token provider
> ---------------------------------------------------------
>
>                 Key: HADOOP-17377
>                 URL: https://issues.apache.org/jira/browse/HADOOP-17377
>             Project: Hadoop Common
>          Issue Type: Bug
>          Components: fs/azure
>    Affects Versions: 3.2.1
>            Reporter: Brandon
>            Priority: Major
>
> *Summary*
>  The MSI token provider fetches auth tokens from the local instance metadata 
> service.
>  The instance metadata service documentation states a limit of 5 requests per 
> second: 
> [https://docs.microsoft.com/en-us/azure/virtual-machines/windows/instance-metadata-service#error-and-debugging]
>  which is fairly low.
> Using ABFS and the MSI token provider, especially when used from multiple 
> threads, ABFS frequently throws HTTP429 throttled exception. The 
> implementation for fetching a token from MSI uses ExponentialRetryPolicy, 
> however ExponentialRetryPolicy does not retry on status code 429, from my 
> read of the code.
> So an initial idea is that the ExponentialRetryPolicy could retry HTTP429 
> errors.
> Another potential enhancement, though more complicated, is to use a static 
> cache for the MSI tokens. The cache would be shared by all threads in the JVM.
> *Environment*
>  This is in the context of Spark clusters running on Azure Virtual Machine 
> Scale Sets. The Virtual Machine Scale Set is configured with a user-assigned 
> identity. The Spark cluster is configured to download application JARs from 
> an `abfs://` path, and auth to the storage account with the MSI token 
> provider. The Spark version is 2.4.4. Hadoop libraries are version 3.2.1. 
> More details on the Spark configuration: each VM runs 3 executor processes, 
> and each executor process uses 5 cores. So on each VM, I expect maybe up to 
> 15 rapid requests to the instance metadata service when the executor is 
> starting up and fetching the JAR.
> *Impact*
>  In my particular use case, the download operation itself is wrapped with 3 
> additional retries. I have never seen the download cause all the tries to be 
> exhausted and fail. In the end, it seems to contribute mostly noise and 
> slowness from the retries. However, having the HTTP429 handled robustly in 
> the ABFS implementation would help application developers succeed and write 
> cleaner code without wrapping individual ABFS operations with retries.
> *Example*
>  Here's an example error message and stack trace. It's always the same stack 
> trace. This appears in my logs a few hundred to low thousands of times a day.
> {noformat}
> AADToken: HTTP connection failed for getting token from AzureAD. Http 
> response: 429 null
> Content-Type: application/json; charset=utf-8 Content-Length: 90 Request ID:  
> Proxies: none
> First 1K of Body: {"error":"invalid_request","error_description":"Temporarily 
> throttled, too many requests"}
>       at 
> org.apache.hadoop.fs.azurebfs.services.AbfsRestOperation.executeHttpOperation(AbfsRestOperation.java:190)
>       at 
> org.apache.hadoop.fs.azurebfs.services.AbfsRestOperation.execute(AbfsRestOperation.java:125)
>       at 
> org.apache.hadoop.fs.azurebfs.services.AbfsClient.getAclStatus(AbfsClient.java:506)
>       at 
> org.apache.hadoop.fs.azurebfs.services.AbfsClient.getAclStatus(AbfsClient.java:489)
>       at 
> org.apache.hadoop.fs.azurebfs.AzureBlobFileSystemStore.getIsNamespaceEnabled(AzureBlobFileSystemStore.java:208)
>       at 
> org.apache.hadoop.fs.azurebfs.AzureBlobFileSystemStore.getFileStatus(AzureBlobFileSystemStore.java:473)
>       at 
> org.apache.hadoop.fs.azurebfs.AzureBlobFileSystem.getFileStatus(AzureBlobFileSystem.java:437)
>       at org.apache.hadoop.fs.FileSystem.isFile(FileSystem.java:1717)
>       at org.apache.spark.util.Utils$.fetchHcfsFile(Utils.scala:747)
>       at org.apache.spark.util.Utils$.doFetchFile(Utils.scala:724)
>       at org.apache.spark.util.Utils$.fetchFile(Utils.scala:496)
>       at 
> org.apache.spark.executor.Executor.$anonfun$updateDependencies$7(Executor.scala:812)
>       at 
> org.apache.spark.executor.Executor.$anonfun$updateDependencies$7$adapted(Executor.scala:803)
>       at 
> scala.collection.TraversableLike$WithFilter.$anonfun$foreach$1(TraversableLike.scala:792)
>       at 
> scala.collection.mutable.HashMap.$anonfun$foreach$1(HashMap.scala:149)
>       at scala.collection.mutable.HashTable.foreachEntry(HashTable.scala:237)
>       at scala.collection.mutable.HashTable.foreachEntry$(HashTable.scala:230)
>       at scala.collection.mutable.HashMap.foreachEntry(HashMap.scala:44)
>       at scala.collection.mutable.HashMap.foreach(HashMap.scala:149)
>       at 
> scala.collection.TraversableLike$WithFilter.foreach(TraversableLike.scala:791)
>       at 
> org.apache.spark.executor.Executor.org$apache$spark$executor$Executor$$updateDependencies(Executor.scala:803)
>       at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:375)
>       at 
> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
>       at 
> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
>       at java.lang.Thread.run(Thread.java:748){noformat}
>  CC [~mackrorysd], [[email protected]]



--
This message was sent by Atlassian Jira
(v8.3.4#803005)

---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to