Hi, I am using the following code to generate cross product in hadoop. package com.example.hadoopexamples.joinnew;
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.ArrayList; import java.util.List; import java.util.StringTokenizer; import org.apache.hadoop.fs.FSDataInputStream; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.NullWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Mapper; public class JoinMapper extends Mapper<LongWritable, Text, Text, NullWritable> { private List<String> inputWords; private String secondFilePath ; @Override protected void setup(Context context) throws IOException, InterruptedException { // TODO Auto-generated method stub secondFilePath = context.getConfiguration().get("secondFilePath"); inputWords = new ArrayList<String>(); } @Override protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { // TODO Auto-generated method stub List<String> inputWordList = getWords(value.toString()); inputWords.addAll(inputWordList); } @Override protected void cleanup(Context context) throws IOException, InterruptedException { // TODO Auto-generated method stub FileSystem fs = FileSystem.get(context.getConfiguration()); FSDataInputStream fsDataInputStream = fs.open(new Path(secondFilePath)); BufferedReader bufferedReader = new BufferedReader(new InputStreamReader(fsDataInputStream)); String line; while((line= bufferedReader.readLine())!=null) { System.out.println("inside while"); List<String> words = getWords(line); for(String word : words) { System.out.println("inside first loop"); for(String inputWord : inputWords) { if(!inputWord.equals(word)) { Text pair = new Text(word+","+inputWord); context.write(pair, NullWritable.get()); } } } } } private List<String> getWords(String inputLine) { List<String> words = new ArrayList<String>(); StringTokenizer stringTokenizer = new StringTokenizer(inputLine.toString()); while(stringTokenizer.hasMoreTokens()) { String token = stringTokenizer.nextToken(); words.add(token); } return words; } } *Driver class* * * package com.example.hadoopexamples.joinnew; import java.io.IOException; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.NullWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class JoinTester { public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException { Configuration configuration = new Configuration(); configuration.set("secondFilePath", args[1]); Job job=new Job(configuration); job.setMapperClass(JoinMapper.class); job.setJarByClass(JoinTester.class); job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(NullWritable.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(Text.class); job.setReducerClass(Reducer.class); //job.setOutputValueGroupingComparator(FirstComparator.class); FileInputFormat.addInputPath(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[2])); job.waitForCompletion(true); } } It uses HDFS streaming of second data file .I got this idea from this thread http://search-hadoop.com/m/FNqzV1DrOEp/cross+product&subj=Re+Cross+Join. Is this is a best practice or there is better way of doing cross product in Hadoop? -- https://github.com/zinnia-phatak-dev/Nectar