Hi all,
This is my first email to the list, so feel free to be candid in your
complaints if I'm doing something canonically uncouth in my requests for
assistance.
I'm using Hadoop 0.23 on 50 machines, each connected with gigabit
ethernet and each having solely a single hard disk. I am getting the
following error repeatably for the TeraSort benchmark. TeraGen runs
without error, but TeraSort runs predictably until this error pops up
between 64% and 70% completion. This doesn't occur for every execution
of the benchmark, as about one out of four times that I run the
benchmark it does run to completion (TeraValidate included).
Error at the CLI:
"12/06/10 11:17:50 INFO mapreduce.Job: map 100% reduce 64%
12/06/10 11:20:45 INFO mapreduce.Job: Task Id :
attempt_1339331790635_0002_m_004337_0, Status : FAILED
Container killed by the ApplicationMaster.
Too Many fetch failures.Failing the attempt
12/06/10 11:21:45 WARN mapreduce.Job: Error reading task output Read
timed out
12/06/10 11:23:06 WARN mapreduce.Job: Error reading task output Read
timed out
12/06/10 11:23:07 INFO mapreduce.Job: Task Id :
attempt_1339331790635_0002_m_004613_0, Status : FAILED"
I am still warming up to Yarn, so am not deft yet at getting all the
logfiles I need, but under more careful inspection of the logs I could
find and the machines themselves it seems like this is related to many
numbers of sockets being up concurrently, which at some point prevents
further connections being made from the requesting Reduce to the Map
which has the data desired, leading the Reducer to believe there is some
error in getting that data. These errors continue to be spewed once
about every 3 minutes for about 45 minutes until at last the job dies
completely.
I have attached my -site.xml files so that a better idea of my
configuration is evident, and any and all suggestions or queries for
more info are welcome. Things I have tried already, per the document I
found at
http://www.slideshare.net/cloudera/hadoop-troubleshooting-101-kate-ting-cloudera:
mapred.reduce.slowstart.completed.maps = 0.80 (seems to help, but it
hurts performance as I'm the only person running on the cluster, and it
doesn't cure the problem -- just increases chance of completion from 1/4
to 1/3 at best)
tasktracker.http.threads = 80 (default is 40 I think, and I've tried
this and even much higher values to no avail)
Best, and Thanks in Advance,
ellis
<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<!-- Put site-specific property overrides in this file. -->
<configuration>
<!-- PROPERTIES FOR ALL TYPES -->
<property>
<name>io.file.buffer.size</name>
<value>131072</value>
<final>true</final>
</property>
<property>
<name>io.sort.mb</name>
<value>256</value>
<final>true</final>
</property>
<property>
<name>hadoop.tmp.dir</name>
<value>/mnt/local/hadoop/tmp</value>
<final>true</final>
</property>
<property>
<name>io.sort.factor</name>
<value>20</value>
<final>true</final>
</property>
<property>
<name>fs.local.block.size</name>
<value>33554432</value>
<final>true</final>
</property>
<property>
<name>fs.default.name</name>
<value>hdfs://pool103:9000</value>
<final>true</final>
</property>
</configuration>
<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<!-- Put site-specific property overrides in this file. -->
<configuration>
<property>
<name>dfs.replication</name>
<value>2</value>
<final>true</final>
</property>
<property>
<name>dfs.permissions</name>
<value>false</value>
</property>
<property>
<name>dfs.namenode.name.dir</name>
<value>/mnt/local/hadoop/name</value>
<final>true</final>
</property>
<property>
<name>dfs.datanode.data.dir</name>
<value>/mnt/local/hadoop/data</value>
<final>true</final>
</property>
<property>
<name>dfs.namenode.handler.count</name>
<value>20</value>
<final>true</final>
</property>
<property>
<name>dfs.datanode.handler.count</name>
<value>10</value>
<final>true</final>
</property>
</configuration>
<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<!-- Put site-specific property overrides in this file. -->
<configuration>
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
<!--
<property>
<name>mapreduce.map.memory.mb</name>
<value>1024</value>
<final>true</final>
</property>
<property>
<name>mapreduce.reduce.java.opts</name>
<value>1536</value>
<final>true</final>
</property>
-->
<property>
<name>mapreduce.map.java.opts</name>
<value>-Xmx512M</value>
<final>true</final>
</property>
<property>
<name>mapreduce.reduce.java.opts</name>
<value>-Xmx512M</value>
<final>true</final>
</property>
<property>
<name>mapreduce.job.reuse.jvm.num.tasks</name>
<value>-1</value>
<final>true</final>
</property>
</configuration>
<?xml version="1.0"?>
<configuration>
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce.shuffle</value>
</property>
<property>
<name>yarn.nodemanager.resource.memory-mb</name>
<value>3072</value>
</property>
<property>
<name>yarn.nodemanager.local-dirs</name>
<value>/mnt/local/hadoop/nmlocal</value>
</property>
<property>
<name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>
<value>org.apache.hadoop.mapred.ShuffleHandler</value>
</property>
<property>
<name>yarn.resourcemanager.resource-tracker.address</name>
<value>pool103:8025</value>
<description>host is the hostname of the resource manager and
port is the port on which the NodeManagers contact the Resource Manager.
</description>
</property>
<property>
<name>yarn.resourcemanager.scheduler.address</name>
<value>pool103:8030</value>
<description>host is the hostname of the resourcemanager and port is the port
on which the Applications in the cluster talk to the Resource Manager.
</description>
</property>
<property>
<name>yarn.resourcemanager.scheduler.class</name>
<value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.capacity.CapacityScheduler</value>
<description>In case you do not want to use the default scheduler</description>
</property>
<property>
<name>yarn.resourcemanager.address</name>
<value>pool103</value>
<description>the host is the hostname of the ResourceManager and the port is the port on
which the clients can talk to the Resource Manager. </description>
</property>
</configuration>