mdiggory 2003/06/05 20:07:39
Modified: math/src/java/org/apache/commons/math MathUtils.java
math/src/test/org/apache/commons/math MathUtilsTest.java
Log:
PR: http://nagoya.apache.org/bugzilla/show_bug.cgi?id=20496
Submitted by: Albert Davidson Chou
Revision Changes Path
1.2 +175 -75
jakarta-commons-sandbox/math/src/java/org/apache/commons/math/MathUtils.java
Index: MathUtils.java
===================================================================
RCS file:
/home/cvs/jakarta-commons-sandbox/math/src/java/org/apache/commons/math/MathUtils.java,v
retrieving revision 1.1
retrieving revision 1.2
diff -u -r1.1 -r1.2
--- MathUtils.java 4 Jun 2003 02:31:13 -0000 1.1
+++ MathUtils.java 6 Jun 2003 03:07:39 -0000 1.2
@@ -14,7 +14,7 @@
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
- * distribution.
+ * distribution.
*
* 3. The end-user documentation included with the redistribution, if
* any, must include the following acknowlegement:
@@ -63,26 +63,126 @@
public class MathUtils {
/**
- * Returns an exact representation of the
- * <a href="http://mathworld.wolfram.com/BinomialCoefficient.html">
- * Binomial Coefficient</a>, "<code>n choose k</code>",
- * the number of <code>k</code>-element subsets that can be selected from
- * an <code>n</code>-element set.
- * <p>
- * <Strong>Preconditions</strong>:<ul>
- * <li> <code>0 < k <= n </code> (otherwise
- * <code>IllegalArgumentException</code> is thrown)</li>
- * <li> The result is small enough to fit into a <code>long</code>. The
- * largest value of <code>n</code> for which all coefficients are
- * <code> < Long.MAX_VALUE</code> is 66. If the computed value
- * exceeds <code>Long.MAX_VALUE</code> an <code>ArithMeticException
- * </code> is thrown.</li>
- * </ul>
- *
- * @param n the size of the set
- * @param k the size of the subsets to be counted
- * @return <code>n choose k</code>
+ * For a double precision value x, this method returns +1.0 if x >= 0
+ * and -1.0 if x < 0.
+ *
+ * @author Albert Davidson Chou
+ * @param x the value, a double
+ * @return +1.0 or -1.0, depending on the the sign of x
+ */
+ public static double sign( double x ) {
+ if ( x >= 0.0 ) {
+ return 1.0 ;
+ } else {
+ return -1.0 ;
+ }
+ }
+
+ /**
+ * For a float value x, this method returns +1.0F if x >= 0
+ * and -1.0F if x < 0.
+ *
+ * @author Albert Davidson Chou
+ * @param x the value, a float
+ * @return +1.0F or -1.0F, depending on the the sign of x
+ */
+ public static float sign( float x ) {
+ if ( x >= 0.0F ) {
+ return 1.0F ;
+ } else {
+ return -1.0F ;
+ }
+ }
+
+ /**
+ * For a byte value x, this method returns (byte)(+1) if x >= 0
+ * and (byte)(-1) if x < 0.
+ *
+ * @author Albert Davidson Chou
+ * @param x the value, a byte
+ * @return (byte)(+1) or (byte)(-1), depending on the the sign of x
+ */
+ public static byte sign( byte x ) {
+ if ( x >= (byte)0 ) {
+ return (byte)1 ;
+ } else {
+ return (byte)(-1) ;
+ }
+ }
+
+ /**
+ * For a short value x, this method returns (short)(+1) if x >= 0
+ * and (short)(-1) if x < 0.
+ *
+ * @author Albert Davidson Chou
+ * @param x the value, a short
+ * @return (short)(+1) or (short)(-1), depending on the the sign of x
+ */
+ public static short sign( short x ) {
+ if ( x >= (short)0 ) {
+ return (short)1 ;
+ } else {
+ return (short)(-1) ;
+ }
+ }
+
+ /**
+ * For an int value x, this method returns +1 if x >= 0
+ * and -1 if x < 0.
+ *
+ * @author Albert Davidson Chou
+ * @param x the value, an int
+ * @return +1 or -1, depending on the the sign of x
*/
+ public static int sign( int x ) {
+ if ( x >= 0 ) {
+ return 1 ;
+ } else {
+ return -1 ;
+ }
+ }
+
+ /**
+ * For a long value x, this method returns +1L if x >= 0
+ * and -1L if x < 0.
+ *
+ * @author Albert Davidson Chou
+ * @param x the value, a long
+ * @return +1L or -1L, depending on the the sign of x
+ */
+ public static long sign( long x ) {
+ if ( x >= 0L ) {
+ return 1L ;
+ } else {
+ return -1L ;
+ }
+ }
+ /**
+ * Returns an exact representation of the
+ * <a href="http://mathworld.wolfram.com/BinomialCoefficient.html">
+ * Binomial Coefficient</a>, "<code>n choose k</code>",
+ * the number of <code>k</code>-element subsets that can be selected from
+ * an <code>n</code>-element set.
+ * <p>
+ * <Strong>Preconditions</strong>:<ul>
+ * <li> <code>0 < k <= n </code> (otherwise
+ * <li> <code>0 < k <= n </code> (otherwise
+ * <code>IllegalArgumentException</code> is thrown)</li>
+ * <li> The result is small enough to fit into a <code>long</code>. The
+ * largest value of <code>n</code> for which all coefficients are
+ * <code> < Long.MAX_VALUE</code> is 66. If the computed value
+ * <li> The result is small enough to fit into a <code>long</code>. The
+ * largest value of <code>n</code> for which all coefficients are
+ * <code> < Long.MAX_VALUE</code> is 66. If the computed value
+ * exceeds <code>Long.MAX_VALUE</code> an <code>ArithMeticException
+ * </code> is thrown.</li>
+ * </ul>
+ *
+ *
+ * @param n the size of the set
+ * @param k the size of the subsets to be counted
+ * @return <code>n choose k</code>
+ */
public static long binomialCoefficient(int n, int k) {
if (n < k) {
throw new IllegalArgumentException
@@ -98,51 +198,51 @@
if ((k == 1) || (k == n - 1)) {
return n;
}
-
+
long result = Math.round(binomialCoefficientDouble(n, k));
if (result == Long.MAX_VALUE) {
throw new ArithmeticException
("result too large to represent in a long integer");
}
- return result;
- }
-
- /**
- * Returns a <code>double</code> representation of the
- * <a href="http://mathworld.wolfram.com/BinomialCoefficient.html">
- * Binomial Coefficient</a>, "<code>n choose k</code>",
- * the number of <code>k</code>-element subsets that can be selected from
+ return result;
+ }
+
+ /**
+ * Returns a <code>double</code> representation of the
+ * <a href="http://mathworld.wolfram.com/BinomialCoefficient.html">
+ * Binomial Coefficient</a>, "<code>n choose k</code>",
+ * the number of <code>k</code>-element subsets that can be selected from
* an <code>n</code>-element set.
* <p>
* <Strong>Preconditions</strong>:<ul>
- * <li> <code>0 < k <= n </code> (otherwise
+ * <li> <code>0 < k <= n </code> (otherwise
* <code>IllegalArgumentException</code> is thrown)</li>
- * <li> The result is small enough to fit into a <code>double</code>.
- * The largest value of <code>n</code> for which all coefficients are
- * < Double.MAX_VALUE is 1029. If the computed value exceeds
+ * <li> The result is small enough to fit into a <code>double</code>.
+ * The largest value of <code>n</code> for which all coefficients are
+ * < Double.MAX_VALUE is 1029. If the computed value exceeds
* Double.MAX_VALUE, Double.POSITIVE_INFINITY is returned</li>
* </ul>
- *
+ *
* @param n the size of the set
* @param k the size of the subsets to be counted
* @return <code>n choose k</code>
*/
- public static double binomialCoefficientDouble(int n, int k) {
- return Math.floor(Math.exp(binomialCoefficientLog(n, k)) + .5);
+ public static double binomialCoefficientDouble(int n, int k) {
+ return Math.floor(Math.exp(binomialCoefficientLog(n, k)) + .5);
}
-
+
/**
* Returns the natural <code>log</code> of the
- * <a href="http://mathworld.wolfram.com/BinomialCoefficient.html">
- * Binomial Coefficient</a>, "<code>n choose k</code>",
- * the number of <code>k</code>-element subsets that can be selected from
+ * <a href="http://mathworld.wolfram.com/BinomialCoefficient.html">
+ * Binomial Coefficient</a>, "<code>n choose k</code>",
+ * the number of <code>k</code>-element subsets that can be selected from
* an <code>n</code>-element set.
* <p>
* <Strong>Preconditions</strong>:<ul>
- * <li> <code>0 < k <= n </code> (otherwise
+ * <li> <code>0 < k <= n </code> (otherwise
* <code>IllegalArgumentException</code> is thrown)</li>
* </ul>
- *
+ *
* @param n the size of the set
* @param k the size of the subsets to be counted
* @return <code>n choose k</code>
@@ -161,38 +261,38 @@
}
if ((k == 1) || (k == n - 1)) {
return Math.log((double) n);
- }
- double logSum = 0;
-
+ }
+ double logSum = 0;
+
// n!/k!
for (int i = k + 1; i <= n; i++) {
logSum += Math.log((double) i);
}
-
+
// divide by (n-k)!
for (int i = 2; i <= n - k; i++) {
logSum -= Math.log((double) i);
}
-
+
return logSum;
}
-
+
/**
* Returns <code>n</code>
- * <a href="http://mathworld.wolfram.com/Factorial.html">
- * Factorial</a>, or <code>n!</code>,
+ * <a href="http://mathworld.wolfram.com/Factorial.html">
+ * Factorial</a>, or <code>n!</code>,
* the product of the numbers <code>1,...,n</code>.
* <p>
* <Strong>Preconditions</strong>:<ul>
- * <li> <code>n > 0</code> (otherwise
+ * <li> <code>n > 0</code> (otherwise
* <code>IllegalArgumentException</code> is thrown)</li>
- * <li> The result is small enough to fit into a <code>long</code>. The
- * largest value of <code>n</code> for which <code>n!</code>
- * < Long.MAX_VALUE</code> is 20. If the computed value
+ * <li> The result is small enough to fit into a <code>long</code>. The
+ * largest value of <code>n</code> for which <code>n!</code>
+ * < Long.MAX_VALUE</code> is 20. If the computed value
* exceeds <code>Long.MAX_VALUE</code> an <code>ArithMeticException
* </code> is thrown.</li>
* </ul>
- *
+ *
* @param n argument
* @return <code>n!</code>
*/
@@ -202,25 +302,25 @@
throw new ArithmeticException
("result too large to represent in a long integer");
}
- return result;
+ return result;
}
-
+
/**
* Returns <code>n</code>
- * <a href="http://mathworld.wolfram.com/Factorial.html">
- * Factorial</a>, or <code>n!</code>,
- * the product of the numbers <code>1,...,n</code>, as as
+ * <a href="http://mathworld.wolfram.com/Factorial.html">
+ * Factorial</a>, or <code>n!</code>,
+ * the product of the numbers <code>1,...,n</code>, as as
* <code>double</code>.
* <p>
* <Strong>Preconditions</strong>:<ul>
- * <li> <code>n > 0</code> (otherwise
+ * <li> <code>n > 0</code> (otherwise
* <code>IllegalArgumentException</code> is thrown)</li>
- * <li> The result is small enough to fit into a <code>double</code>. The
- * largest value of <code>n</code> for which <code>n!</code>
- * < Double.MAX_VALUE</code> is 170. If the computed value exceeds
+ * <li> The result is small enough to fit into a <code>double</code>. The
+ * largest value of <code>n</code> for which <code>n!</code>
+ * < Double.MAX_VALUE</code> is 170. If the computed value exceeds
* Double.MAX_VALUE, Double.POSITIVE_INFINITY is returned</li>
* </ul>
- *
+ *
* @param n argument
* @return <code>n!</code>
*/
@@ -229,21 +329,21 @@
throw new IllegalArgumentException
("must have n > 0 for n!");
}
- return Math.floor(Math.exp(factorialLog(n)) + 0.5);
+ return Math.floor(Math.exp(factorialLog(n)) + 0.5);
}
-
+
/**
* Returns the natural <code>log</code> of <code>n</code>
- * <a href="http://mathworld.wolfram.com/Factorial.html">
- * Factorial</a>, or <code>n!</code>,
- * the product of the numbers <code>1,...,n</code>, as as
+ * <a href="http://mathworld.wolfram.com/Factorial.html">
+ * Factorial</a>, or <code>n!</code>,
+ * the product of the numbers <code>1,...,n</code>, as as
* <code>double</code>.
* <p>
* <Strong>Preconditions</strong>:<ul>
- * <li> <code>n > 0</code> (otherwise
+ * <li> <code>n > 0</code> (otherwise
* <code>IllegalArgumentException</code> is thrown)</li>
* </ul>
- *
+ *
* @param n argument
* @return <code>n!</code>
*/
@@ -255,7 +355,7 @@
double logSum = 0;
for (int i = 2; i <= n; i++) {
logSum += Math.log((double) i);
- }
+ }
return logSum;
- }
+ }
}
1.2 +69 -34
jakarta-commons-sandbox/math/src/test/org/apache/commons/math/MathUtilsTest.java
Index: MathUtilsTest.java
===================================================================
RCS file:
/home/cvs/jakarta-commons-sandbox/math/src/test/org/apache/commons/math/MathUtilsTest.java,v
retrieving revision 1.1
retrieving revision 1.2
diff -u -r1.1 -r1.2
--- MathUtilsTest.java 4 Jun 2003 02:31:14 -0000 1.1
+++ MathUtilsTest.java 6 Jun 2003 03:07:39 -0000 1.2
@@ -14,7 +14,7 @@
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
- * distribution.
+ * distribution.
*
* 3. The end-user documentation included with the redistribution, if
* any, must include the following acknowlegement:
@@ -69,9 +69,9 @@
public MathUtilsTest(String name) {
super(name);
- }
-
- public void setUp() {
+ }
+
+ public void setUp() {
}
public static Test suite() {
@@ -157,10 +157,10 @@
;
}
double x = MathUtils.binomialCoefficientDouble(1030,515);
- assertTrue("expecting infinite binomial coefficient",
+ assertTrue("expecting infinite binomial coefficient",
Double.isInfinite(x));
}
-
+
public void testFactorial() {
for (int i = 1; i < 10; i++) {
assertEquals(i + "! ",factorial(i),MathUtils.factorial(i));
@@ -170,7 +170,7 @@
MathUtils.factorialLog(i),10E-12);
}
}
-
+
public void testFactorialFail() {
try {
long x = MathUtils.factorial(0);
@@ -196,26 +196,26 @@
} catch (ArithmeticException ex) {
;
}
- assertTrue("expecting infinite factorial value",
+ assertTrue("expecting infinite factorial value",
Double.isInfinite(MathUtils.factorialDouble(171)));
-
+
}
-
-
- /**
+
+
+ /**
* Exact recursive implementation to test against
*/
- private long binomialCoefficient(int n, int k) {
+ private long binomialCoefficient(int n, int k) {
if ((n == k) || (k == 0)) {
return 1;
}
if ((k == 1) || (k == n - 1)) {
return n;
}
- return binomialCoefficient(n - 1, k - 1) +
+ return binomialCoefficient(n - 1, k - 1) +
binomialCoefficient(n - 1, k);
- }
-
+ }
+
/**
* Finds the largest values of n for which binomialCoefficient and
* binomialCoefficientDouble will return values that fit in a long, double,
@@ -225,7 +225,7 @@
findBinomialLimits();
}
*/
-
+
private void findBinomialLimits() {
/**
* will kick out 66 as the limit for long
@@ -241,8 +241,8 @@
("largest n for binomialCoefficient = " + (test - 1) );
}
test++;
- }
-
+ }
+
/**
* will kick out 1029 as the limit for double
*/
@@ -256,19 +256,19 @@
("largest n for binomialCoefficientD = " + (test - 1) );
}
test++;
- }
+ }
}
-
+
/**
* Finds the largest values of n for which factiorial and
* factorialDouble will return values that fit in a long, double,
* resp. Remove comments around test below to get this in test-report
-
+
public void testFactiorialLimits() {
findFactorialLimits();
}
*/
-
+
private void findFactorialLimits() {
/**
* will kick out 20 as the limit for long
@@ -284,8 +284,8 @@
("largest n for factorial = " + (test - 1) );
}
test++;
- }
-
+ }
+
/**
* will kick out 170 as the limit for double
*/
@@ -299,21 +299,56 @@
("largest n for factorialDouble = " + (test - 1) );
}
test++;
- }
+ }
}
-
-
- /**
+
+
+ /**
* Exact direct multiplication implementation to test against
*/
- private long factorial(int n) {
+ private long factorial(int n) {
long result = 1;
for (int i = 2; i <= n; i++) {
result *= i;
}
return result;
- }
-
-
+ }
+
+
+ public void testSignDouble() {
+ double delta = 0.0 ;
+ assertEquals( 1.0, MathUtils.sign( 2.0 ), delta ) ;
+ assertEquals( -1.0, MathUtils.sign( -2.0 ), delta ) ;
+ }
+
+ public void testSignFloat() {
+ float delta = 0.0F ;
+ assertEquals( 1.0F, MathUtils.sign( 2.0F ), delta ) ;
+ assertEquals( -1.0F, MathUtils.sign( -2.0F ), delta ) ;
+ }
+
+
+ public void testSignByte() {
+ assertEquals( (byte)1, MathUtils.sign( (byte)2 ) ) ;
+ assertEquals( (byte)(-1), MathUtils.sign( (byte)(-2) ) ) ;
+ }
+
+
+ public void testSignShort() {
+ assertEquals( (short)1, MathUtils.sign( (short)2 ) ) ;
+ assertEquals( (short)(-1), MathUtils.sign( (short)(-2) ) ) ;
+ }
+
+
+ public void testSignInt() {
+ assertEquals( (int)1, MathUtils.sign( (int)(2) ) ) ;
+ assertEquals( (int)(-1), MathUtils.sign( (int)(-2) ) ) ;
+ }
+
+
+ public void testSignLong() {
+ assertEquals( 1L, MathUtils.sign( 2L ) ) ;
+ assertEquals( -1L, MathUtils.sign( -2L ) ) ;
+ }
}
---------------------------------------------------------------------
To unsubscribe, e-mail: [EMAIL PROTECTED]
For additional commands, e-mail: [EMAIL PROTECTED]