Hi David, Yes, there is a fair amount of object overhead in Shapely. You may want to consider a more optimized solution written as a C extension with no Shapely classes at all. See "Subject 2.03: How do I find if a point lies within a polygon?" in http://www.faqs.org/faqs/graphics/algorithms-faq/. FWIW, there's an implementation of pnpoly in matplotlib: http://matplotlib.org/1.2.0/api/nxutils_api.html.
On Fri, Aug 30, 2013 at 2:10 PM, David Stuebe <stu...@gmail.com> wrote: > > > Hi GisPython > > I am new to using shapley. > > I have a few polygons and I am interested in finding out about which of > some millions of points intersect those polygons. > > I only need to create the polygons once - there are dozens at most, but > creating millions of point objects is killing my performance big time! > > Here is some cprofile output from a test run: > > 159616551 function calls (159601695 primitive calls) in 307.189 > seconds > > Ordered by: internal time > List reduced from 1844 to 20 due to restriction <20> > > ncalls tottime percall cumtime percall filename:lineno(function) > 7518198 135.451 0.000 185.103 0.000 predicates.py:8(__call__) > 1253033 22.242 0.000 51.047 0.000 > point.py:170(geos_point_from_py) > 7518198 16.698 0.000 16.698 0.000 > base.py:24(geometry_type_name) > 8011 16.586 0.002 302.903 0.038 > shapely_intersects.py:26(shape_function) > 7518198 14.399 0.000 201.687 0.000 base.py:447(intersects) > 8771627 11.716 0.000 38.436 0.000 {hasattr} > 15036396 11.607 0.000 45.146 0.000 topology.py:14(_validate) > 8771241 7.834 0.000 11.235 0.000 > collections.py:119(itervalues) > 3759104 7.515 0.000 10.693 0.000 base.py:131(empty) > 1253033 7.092 0.000 12.961 0.000 numeric.py:446(require) > 1253033 5.791 0.000 63.158 0.000 point.py:105(_set_coords) > 37590990 5.679 0.000 5.679 0.000 base.py:162(_get_geom) > 7518198 5.659 0.000 23.459 0.000 base.py:242(geometryType) > 1253033 4.999 0.000 4.999 0.000 __init__.py:501(cast) > 8771283 3.401 0.000 3.401 0.000 collections.py:72(__iter__) > 7518198 3.260 0.000 26.719 0.000 base.py:245(type) > 3759104 3.178 0.000 3.178 0.000 base.py:124(_is_empty) > 1253033 2.874 0.000 66.251 0.000 point.py:38(__init__) > 1253033 2.835 0.000 23.231 0.000 coords.py:17(required) > 1253036 2.689 0.000 2.689 0.000 {method 'copy' of > 'numpy.ndarray' objects} > > Would it be possible to pool the point objects and just change out the > lat/lon location of the point object before every call to intersects? > > Here is a code except - > > blen = len(block) > > particle_position = block['loc'] # a (n,2) array of lat/lon > > spillets_in_shapes = numpy.zeros((blen, slen),dtype='bool') > > for i, pos in enumerate(particle_position): > p = Point(pos) > for j,shape in enumerate(shapes.itervalues()): > if shape.intersects(p): > spillets_in_shapes[i,j] = True > > > This code is called many times for each block of particles that I have to > process. > > It seems most of my time is spent in initializing point objects and in > something called predicates.py? > > Any suggestions for optimization? > > David > > > _______________________________________________ > Community mailing list > Community@lists.gispython.org > http://lists.gispython.org/mailman/listinfo/community > > -- Sean Gillies
_______________________________________________ Community mailing list Community@lists.gispython.org http://lists.gispython.org/mailman/listinfo/community