On Sat, 27 Jul 2024 14:44:15 GMT, fabioromano1 <d...@openjdk.org> wrote:
>> I have implemented the Zimmermann's square root algorithm, available in >> works [here](https://inria.hal.science/inria-00072854/en/) and >> [here](https://www.researchgate.net/publication/220532560_A_proof_of_GMP_square_root). >> >> The algorithm is proved to be asymptotically faster than the Newton's >> Method, even for small numbers. To get an idea of how much the Newton's >> Method is slow, consult my article >> [here](https://arxiv.org/abs/2406.07751), in which I compare Newton's Method >> with a version of classical square root algorithm that I implemented. After >> implementing Zimmermann's algorithm, it turns out that it is faster than my >> algorithm even for small numbers. > > fabioromano1 has updated the pull request incrementally with two additional > commits since the last revision: > > - Correct test method name > - Updated sqrt speed test benchmark On my M1 Pro/32 GiB Current Benchmark Mode Cnt Score Error Units BigIntegerSquareRoot.testBigSqrtAndRemainder avgt 15 45.655 ? 0.273 ns/op BigIntegerSquareRoot.testHugeSqrtAndRemainder avgt 15 1200587.822 ? 7358.024 ns/op BigIntegerSquareRoot.testLargeSqrtAndRemainder avgt 15 27.052 ? 0.143 ns/op BigIntegerSquareRoot.testSmallSqrtAndRemainder avgt 15 33.098 ? 0.207 ns/op New Benchmark Mode Cnt Score Error Units BigIntegerSquareRoot.testBigSqrtAndRemainder avgt 15 21.110 ? 0.151 ns/op BigIntegerSquareRoot.testHugeSqrtAndRemainder avgt 15 21525.493 ? 36.219 ns/op BigIntegerSquareRoot.testLargeSqrtAndRemainder avgt 15 14.897 ? 0.257 ns/op BigIntegerSquareRoot.testSmallSqrtAndRemainder avgt 15 15.539 ? 0.146 ns/op Nice! ------------- PR Comment: https://git.openjdk.org/jdk/pull/19710#issuecomment-2254170586