On Wed, 31 Jul 2024 18:52:12 GMT, fabioromano1 <d...@openjdk.org> wrote:
>> I have implemented the Zimmermann's square root algorithm, available in >> works [here](https://inria.hal.science/inria-00072854/en/) and >> [here](https://www.researchgate.net/publication/220532560_A_proof_of_GMP_square_root). >> >> The algorithm is proved to be asymptotically faster than the Newton's >> Method, even for small numbers. To get an idea of how much the Newton's >> Method is slow, consult my article >> [here](https://arxiv.org/abs/2406.07751), in which I compare Newton's Method >> with a version of classical square root algorithm that I implemented. After >> implementing Zimmermann's algorithm, it turns out that it is faster than my >> algorithm even for small numbers. > > fabioromano1 has updated the pull request incrementally with one additional > commit since the last revision: > > Memory usage optimization On Apple M1 Pro/32 GiB before Benchmark Mode Cnt Score Error Units BigIntegerSquareRoot.testSqrtL avgt 15 199747.794 ? 6173.446 ns/op BigIntegerSquareRoot.testSqrtM avgt 15 14902.574 ? 1291.014 ns/op BigIntegerSquareRoot.testSqrtS avgt 15 2093.805 ? 76.538 ns/op BigIntegerSquareRoot.testSqrtXL avgt 15 1188345.044 ? 1049.728 ns/op BigIntegerSquareRoot.testSqrtXS avgt 15 19.693 ? 0.350 ns/op after Benchmark Mode Cnt Score Error Units BigIntegerSquareRoot.testSqrtL avgt 15 2760.508 ? 56.561 ns/op BigIntegerSquareRoot.testSqrtM avgt 15 724.419 ? 30.709 ns/op BigIntegerSquareRoot.testSqrtS avgt 15 193.664 ? 0.689 ns/op BigIntegerSquareRoot.testSqrtXL avgt 15 21068.074 ? 358.149 ns/op BigIntegerSquareRoot.testSqrtXS avgt 15 4.871 ? 0.096 ns/op Impressive! ------------- PR Comment: https://git.openjdk.org/jdk/pull/19710#issuecomment-2261214678