[Apologies for cross-posting]

ODESIA CHALLENGE @ SEPLN 2024 – Evaluation of NLP Systems in Spanish
https://leaderboard.odesia.uned.es/en/leaderboard/challenge

Call for Participation

The members of the ODESIA<https://odesia.es/> project (Space for the 
Observation of the Development of Spanish in Artificial Intelligence) and the 
organizers of SEPLN 2024 are pleased to invite you to participate in the ODESIA 
Challenge @ SEPLN 2024. This competition aims to promote the development and 
evaluation of language technologies in Spanish using the evaluation platform 
and datasets provided by ODESIA (see full rules 
here<https://unedo365-my.sharepoint.com/:b:/g/personal/al_benito_lsi_uned_es/EWmKb2Y861JPh3ovoEZiA34BSmYsommwul5ZCTais0urMw?e=XVzioS>).

Participants must create a system capable of solving 10 discriminative Natural 
Language Processing (NLP) tasks in Spanish belonging to the ODESIA 
Leaderboard<https://leaderboard.odesia.uned.es/en/node/1>. The winning team 
will receive a cash prize of 3,000 euros, donated by the company Llorente y 
Cuenca Madrid, SL. (conditions apply, see below).

Tasks
The ODESIA-CORE benchmark consists of 10 discriminative tasks with public 
training datasets and private test datasets (not previously distributed by any 
means) created within the ODESIA initiative. The private nature of the test 
data guarantees the absence of contamination in the leaderboard results: no LLM 
should have seen the test set annotations in its pre-training phase.

Accepted Systems
All types of Natural Language Processing (NLP) systems that are applied 
uniformly to all tasks will be accepted. That is, each participation must be a 
single system that applies to all tasks, instead of different approaches for 
each task. A submission in which the solution for each task is constructed 
independently will not be acceptable. For illustrative purposes, systems with 
the following characteristics (the list is non-exhaustive) are acceptable:

  1.  The system is an encoder-type LLM (or an ensemble of LLMs), to which a 
fine-tuning process is applied for each of the challenge tasks, using the 
training data provided in the participants’ package or from other sources as 
deemed appropriate by the participating team.
  2.  The system uses one or more generative LLMs, combined with a uniform 
zero-shot, one-shot or few-shot prompting strategy.
  3.  The system uses one or more generative LLMs combined with a 
retrieval-augmented generation strategy on the training dataset or other 
external sources.
  4.  Any combination of the above methods, as long as it is applied uniformly 
to all datasets.


Registration and Participation
Teams will have to pre-register before they can participate. Each team will 
register a single account on the ODESIA Leaderboard evaluation platform using 
the form provided for this purpose 
(link<https://forms.office.com/e/Tg0Yv6AtHw>). The organizers will provide a 
username and password on the ODESIA Leaderboard platform upon validation of the 
registration data.

Prize
A single prize of 3,000 euros -donated by Llorente y Cuenca Madrid, SL- will be 
awarded to the team that submits the system with the best global average 
performance in the ODESIA-CORE tasks for Spanish, and that outperforms the best 
current model in the Leaderboard (XLM-Roberta-Large - 0.5873). Please note that 
for the prize to be awarded, there must be a minimum of five teams submitting 
results; if this number is not met, the organization reserves the right to 
defer the challenge's deadline until this number is reached. Also, The winning 
team commits to present its solution (in-person or online) at the Award 
ceremony at SEPLN 2024 (25th September 2024, Valladolid - Spain).

Important dates

  *
Registration opens: 1st July 2024
  *
 Registration closes: 30th July 2024 *
  *
Submission deadline: 14th September 2024 *
  *
Official results announced: 16-20th September 2024
  *   Award ceremony and presentation of results: 25th September 2024 - 5:30pm, 
at SEPLN 2024

*23:59 AoE (Anywhere on Earth)

Organizing Committee


  *   Alejandro Benito-Santos (co-chair, UNED)
  *   Roser Morante (co-chair, UNED)
  *   Julio Gonzalo (UNED)
  *   Jorge Carrillo-de-Albornoz (UNED)
  *   Laura Plaza (UNED)
  *   Enrique Amigó (UNED)
  *   Víctor Fresno (UNED)
  *   Andrés Fernández (UNED)
  *   Adrián Ghajari (UNED)
  *   Guillermo Marco (UNED)
  *   Eva Sánchez (UNED)
  *   Miguel Lucas (LLYC)


Advisory Board

  *   TBA


Contact and More Information:

  *   The full contest rules, along with instructions to participate, can be 
found at the ODESIA Leaderboard 
website<https://leaderboard.odesia.uned.es/leaderboard/challenge> and here in 
PDF<https://unedo365-my.sharepoint.com/:b:/g/personal/al_benito_lsi_uned_es/EWmKb2Y861JPh3ovoEZiA34BSmYsommwul5ZCTais0urMw?e=XVzioS>.
  *   For questions related to the challenge, please join our Discord server:  
#odesia-challenge-2024.<https://discord.gg/psw7ayZzf6> You can also contact the 
challenge co-chairs, Alejandro Benito-Santos 
([email protected]<mailto:[email protected]>) and Roser Morante 
([email protected]<mailto:[email protected]>).


AVISO LEGAL. Este mensaje puede contener información reservada y confidencial. 
Si usted no es el destinatario no está autorizado a copiar, reproducir o 
distribuir este mensaje ni su contenido. Si ha recibido este mensaje por error, 
le rogamos que lo notifique al remitente.
Le informamos de que sus datos personales, que puedan constar en este mensaje, 
serán tratados en calidad de responsable de tratamiento por la UNIVERSIDAD 
NACIONAL DE EDUCACIÓN A DISTANCIA (UNED) c/ Bravo Murillo, 38, 28015-MADRID-, 
con la finalidad de mantener el contacto con usted. La base jurídica que 
legitima este tratamiento, será su consentimiento, el interés legítimo o la 
necesidad para gestionar una relación contractual o similar. En cualquier 
momento podrá ejercer sus derechos de acceso, rectificación, supresión, 
oposición, limitación al tratamiento o portabilidad de los datos, ante la UNED, 
Departamento de Política Jurídica de Seguridad de la 
Información<https://www.uned.es/dpj>, o a través de la Sede 
electrónica<https://sede.uned.es/> de la Universidad.
Para más información visite nuestra Política de 
Privacidad<https://descargas.uned.es/publico/pdf/Politica_privacidad_UNED.pdf>.
_______________________________________________
Corpora mailing list -- [email protected]
https://list.elra.info/mailman3/postorius/lists/corpora.list.elra.info/
To unsubscribe send an email to [email protected]

Reply via email to