Hi,

I am searching for symmetric encryption algorithms for decimal strings.

Let's say we have various 40-digit decimal numbers:
2349823966232362361233845734628834823823
3250920019325023523623692235235728239462
0198230198519248209721383748374928601923

As far as I calculated, a decimal has the equivalent of about 3,3219
bits, so with 40 digits, we have about 132,877 bits.

Now I would like to encrypt those numbers in a way that the result is a
decimal number again (that's one of the basic rules of symmetric
encryption algorithms as far as I remember).

Since the 132,877 bits is similar to 128 bit encryption (like eg. AES),
I would like to use an algorithm with a somewhat comparable strength to AES.
But the problem is that I have 132,877 bits, not 128 bits. And I can't
cut it off or enhance it, since the result has to be a 40 digit decimal
number again.

Does anyone know a an algorithm that has reasonable strength and is able
to operate on non-binary data? Preferrably on any chosen number-base?

Best regards,
Philipp Gühring

---------------------------------------------------------------------
The Cryptography Mailing List
Unsubscribe by sending "unsubscribe cryptography" to [EMAIL PROTECTED]

Reply via email to