Hey everyone,

The patched version of rw.cpp is attached.
It contains the patch proposed by the authors of the paper.
A patch to CryptoJPM should go live within the next 24 hours.

We should offer the corrected file at least in the wiki at least at the
rabin-williams page (there's no such page yet) or maybe at the main page.
We could also note on the main page that there's an security issue with
rabin-williams and one should patch the file with the provided one.

Concerning the how could the bug be in there:
Someone tried to protect Rabin-Williams against timing attacks by
blinding the signed value. This defense works.
However as the blinding factor seems not to be chosen carefully enough
it looks like x^2=y^2 (mod n), with x and y being signatures on a
message and n being the modulus always holds and in some bad cases if
some properties of the blinding factor comes into the mix one can factor
n using GCD(n,y-x).

I'm not sure if this explication makes sense, but read the paper
<https://eprint.iacr.org/2015/368.pdf> for the full details.

BR

JPM

Am 24.04.2015 um 12:34 schrieb Jean-Pierre Münch:
> Hey Guys,
>
> there's a recent publication claiming to have broken Crypto++'s
> Rabin-Wiliams signature scheme.
> The author claims to be able to recover the private key as soon as the
> same message is signed twice under the same private key.
> I haven't yet read the paper but wanted to inform you guys ASAP.
>
> Paper <https://eprint.iacr.org/2015/368.pdf>
> CVE-2015-2141
>
> As soon as I've read the paper I'll inform you guys about the details
> and a possible fix which will go live in CryptoJPM asap.
>
> BR
>
> JPM
> -- 
> -- 
> You received this message because you are subscribed to the "Crypto++
> Users" Google Group.
> To unsubscribe, send an email to
> [email protected].
> More information about Crypto++ and this group is available at
> http://www.cryptopp.com.
> ---
> You received this message because you are subscribed to the Google
> Groups "Crypto++ Users" group.
> To unsubscribe from this group and stop receiving emails from it, send
> an email to [email protected]
> <mailto:[email protected]>.
> For more options, visit https://groups.google.com/d/optout.

-- 
-- 
You received this message because you are subscribed to the "Crypto++ Users" 
Google Group.
To unsubscribe, send an email to [email protected].
More information about Crypto++ and this group is available at 
http://www.cryptopp.com.
--- 
You received this message because you are subscribed to the Google Groups 
"Crypto++ Users" group.
To unsubscribe from this group and stop receiving emails from it, send an email 
to [email protected].
For more options, visit https://groups.google.com/d/optout.
// rw.cpp - written and placed in the public domain by Wei Dai

#include "pch.h"
#include "rw.h"
#include "nbtheory.h"
#include "asn.h"

#ifndef CRYPTOPP_IMPORTS

NAMESPACE_BEGIN(CryptoPP)

void RWFunction::BERDecode(BufferedTransformation &bt)
{
        BERSequenceDecoder seq(bt);
        m_n.BERDecode(seq);
        seq.MessageEnd();
}

void RWFunction::DEREncode(BufferedTransformation &bt) const
{
        DERSequenceEncoder seq(bt);
        m_n.DEREncode(seq);
        seq.MessageEnd();
}

Integer RWFunction::ApplyFunction(const Integer &in) const
{
        DoQuickSanityCheck();

        Integer out = in.Squared()%m_n;
        const word r = 12;
        // this code was written to handle both r = 6 and r = 12,
        // but now only r = 12 is used in P1363
        const word r2 = r/2;
        const word r3a = (16 + 5 - r) % 16;     // n%16 could be 5 or 13
        const word r3b = (16 + 13 - r) % 16;
        const word r4 = (8 + 5 - r/2) % 8;      // n%8 == 5
        switch (out % 16)
        {
        case r:
                break;
        case r2:
        case r2+8:
                out <<= 1;
                break;
        case r3a:
        case r3b:
                out.Negate();
                out += m_n;
                break;
        case r4:
        case r4+8:
                out.Negate();
                out += m_n;
                out <<= 1;
                break;
        default:
                out = Integer::Zero();
        }
        return out;
}

bool RWFunction::Validate(RandomNumberGenerator &rng, unsigned int level) const
{
        bool pass = true;
        pass = pass && m_n > Integer::One() && m_n%8 == 5;
        return pass;
}

bool RWFunction::GetVoidValue(const char *name, const std::type_info 
&valueType, void *pValue) const
{
        return GetValueHelper(this, name, valueType, pValue).Assignable()
                CRYPTOPP_GET_FUNCTION_ENTRY(Modulus)
                ;
}

void RWFunction::AssignFrom(const NameValuePairs &source)
{
        AssignFromHelper(this, source)
                CRYPTOPP_SET_FUNCTION_ENTRY(Modulus)
                ;
}

// *****************************************************************************
// private key operations:

// generate a random private key
void InvertibleRWFunction::GenerateRandom(RandomNumberGenerator &rng, const 
NameValuePairs &alg)
{
        int modulusSize = 2048;
        alg.GetIntValue("ModulusSize", modulusSize) || 
alg.GetIntValue("KeySize", modulusSize);

        if (modulusSize < 16)
                throw InvalidArgument("InvertibleRWFunction: specified modulus 
length is too small");

        AlgorithmParameters primeParam = 
MakeParametersForTwoPrimesOfEqualSize(modulusSize);
        m_p.GenerateRandom(rng, CombinedNameValuePairs(primeParam, 
MakeParameters("EquivalentTo", 3)("Mod", 8)));
        m_q.GenerateRandom(rng, CombinedNameValuePairs(primeParam, 
MakeParameters("EquivalentTo", 7)("Mod", 8)));

        m_n = m_p * m_q;
        m_u = m_q.InverseMod(m_p);
}

void InvertibleRWFunction::BERDecode(BufferedTransformation &bt)
{
        BERSequenceDecoder seq(bt);
        m_n.BERDecode(seq);
        m_p.BERDecode(seq);
        m_q.BERDecode(seq);
        m_u.BERDecode(seq);
        seq.MessageEnd();
}

void InvertibleRWFunction::DEREncode(BufferedTransformation &bt) const
{
        DERSequenceEncoder seq(bt);
        m_n.DEREncode(seq);
        m_p.DEREncode(seq);
        m_q.DEREncode(seq);
        m_u.DEREncode(seq);
        seq.MessageEnd();
}

Integer InvertibleRWFunction::CalculateInverse(RandomNumberGenerator &rng, 
const Integer &x) const
{
        DoQuickSanityCheck();
        ModularArithmetic modn(m_n);
        Integer r, rInv;
        do {    // do this in a loop for people using small numbers for testing
                r.Randomize(rng, Integer::One(), m_n - Integer::One());
                rInv = modn.MultiplicativeInverse(r);
        } while (rInv.IsZero() || (Jacobi(r % m_p,m_p)==-1) || (Jacobi(r % 
m_q,m_q)==-1));
        Integer re = modn.Square(r);
        re = modn.Multiply(re, x);                      // blind

        Integer cp=re%m_p, cq=re%m_q;
        if (Jacobi(cp, m_p) * Jacobi(cq, m_q) != 1)
        {
                cp = cp.IsOdd() ? (cp+m_p) >> 1 : cp >> 1;
                cq = cq.IsOdd() ? (cq+m_q) >> 1 : cq >> 1;
        }

        #pragma omp parallel
                #pragma omp sections
                {
                        #pragma omp section
                                cp = ModularSquareRoot(cp, m_p);
                        #pragma omp section
                                cq = ModularSquareRoot(cq, m_q);
                }

        Integer y = CRT(cq, m_q, cp, m_p, m_u);
        y = modn.Multiply(y, rInv);                             // unblind
        y = STDMIN(y, m_n-y);
        if (ApplyFunction(y) != x)                              // check
                throw Exception(Exception::OTHER_ERROR, "InvertibleRWFunction: 
computational error during private key operation");
        return y;
}

bool InvertibleRWFunction::Validate(RandomNumberGenerator &rng, unsigned int 
level) const
{
        bool pass = RWFunction::Validate(rng, level);
        pass = pass && m_p > Integer::One() && m_p%8 == 3 && m_p < m_n;
        pass = pass && m_q > Integer::One() && m_q%8 == 7 && m_q < m_n;
        pass = pass && m_u.IsPositive() && m_u < m_p;
        if (level >= 1)
        {
                pass = pass && m_p * m_q == m_n;
                pass = pass && m_u * m_q % m_p == 1;
        }
        if (level >= 2)
                pass = pass && VerifyPrime(rng, m_p, level-2) && 
VerifyPrime(rng, m_q, level-2);
        return pass;
}

bool InvertibleRWFunction::GetVoidValue(const char *name, const std::type_info 
&valueType, void *pValue) const
{
        return GetValueHelper<RWFunction>(this, name, valueType, 
pValue).Assignable()
                CRYPTOPP_GET_FUNCTION_ENTRY(Prime1)
                CRYPTOPP_GET_FUNCTION_ENTRY(Prime2)
                
CRYPTOPP_GET_FUNCTION_ENTRY(MultiplicativeInverseOfPrime2ModPrime1)
                ;
}

void InvertibleRWFunction::AssignFrom(const NameValuePairs &source)
{
        AssignFromHelper<RWFunction>(this, source)
                CRYPTOPP_SET_FUNCTION_ENTRY(Prime1)
                CRYPTOPP_SET_FUNCTION_ENTRY(Prime2)
                
CRYPTOPP_SET_FUNCTION_ENTRY(MultiplicativeInverseOfPrime2ModPrime1)
                ;
}

NAMESPACE_END

#endif

Attachment: smime.p7s
Description: S/MIME Cryptographic Signature

Reply via email to