Jean-François Burnol submitted an update to the xint
package. Version number: 1.1 2014/10/28 License type: lppl1.3 Summary description: Expandable operations on long numbers Announcement text: ---------------------------------------------------------------------- xint 1.1 has some bug fixes, a few breaking changes, and many extensions to xintexpr. See CHANGES.pdf or CHANGES.html for details. The documentation has been completely revamped. The source code is separately available as sourcexint.pdf. Package xintcore is split-off from xint taking with it all the basic arithmetic. This way, my other package bnumexpr has minimal overhead. Neither xint nor xintfrac load xinttools anymore, only xintexpr does. \xintthefloatexpr add(x^15,x=[1..10]/13)\relax \xinttheiiexpr seq(seq(i^2+j^2, i=1..j),j=1..30)\relax % nesting \xinttheexpr seq(x^2+x+1, x=1..10, 20..30, 40..50)\relax \xinttheexpr 37*[15..[-2]..-13]^3\relax % itemwise operations \xinttheexpr add(x^3, x = [89..120,150..200][15:-15])\relax % slicing First Fibonacci number at least 2^64 and its index \xinttheiiexpr iter(0,1; (@1>=2^64)?{break(i)}{@2+@1}, i=1++)\relax Euclide Algorithm \newcommand\GCD [2] {\xinttheiiexpr rrseq(#1,#2; (@1=0)?{abort}{@2/:@1}, i=1++)\relax } One last: (ok, this one looks a bit scary). \newcommand\Factors [1]{\xinttheiiexpr subs(seq((i/:3=2)?{omit}{[L][i]},i=1..([L][0])), % [L][0]= # of items L=rseq(#1;([@][1]<=1)?{abort}{(([@][1])/:p)?{omit} {iter(([@][1])//p; (@/:p)?{break((@,p,e))}{@//p},e=1++)}},p=2++))\relax } \Factors {41^4*59^2*29^3*13^5*17^8*29^2*59^4*37^6} produces 16246355912554185673266068721806243461403654781833, 13, 5, 17, 8, 29, 5, 37, 6, 41, 4, 59, 6 ---------------------------------------------------------------------- This package is located at http://mirror.ctan.org/macros/generic/xint/ More information is at http://www.ctan.org/pkg/xint We are supported by the TeX Users Group http://www.tug.org . Please join a users group; see http://www.tug.org/usergroups.html . ------------------------------------------------------------------------ Thanks for the upload. For the CTAN Team Petra Rübe-Pugliese _______________________________________________ Ctan-ann mailing list Ctan-ann@dante.de https://lists.dante.de/mailman/listinfo/ctan-ann