We are trying to use CPR
https://github.com/whoshuu/cpr
in a multithreaded context.
We are compiling with C++11 support, and CPR was built with libcurl 7.32.
Each CPR operation (GET, POST, etc) seems to use curl_easy.
We are queuing each CPR request as:
pool->enqueue(*threadFunction, urlStr)
where 'pool' is a ThreadPool instance of the attached third-party class.
When we use a 1-thread pool, things work.
We when use more than 1 thread, results are inconsistent. Including incomplete
requests.
Are there any known gotchas to curl_easy use in a thread pool context?
Can you recommend a (better?) thread pool approach?
We are investigating CPR for the same question.
r/
Lee
--
Lee McKinney / Senior Software Engineer, CSM, SA
VENCORE, Services & Solutions Inc.
1103 Balch Blvd, Ste 210, Stennis Space Center, MS 39529
www.vencore.com
#ifndef THREAD_POOL_H
#define THREAD_POOL_H
#include <vector>
#include <queue>
#include <memory>
#include <thread>
#include <mutex>
#include <condition_variable>
#include <future>
#include <functional>
#include <stdexcept>
class ThreadPool {
public:
ThreadPool(size_t);
template<class F, class... Args>
auto enqueue(F&& f, Args&&... args)
-> std::future<typename std::result_of<F(Args...)>::type>;
~ThreadPool();
private:
// need to keep track of threads so we can join them
std::vector< std::thread > workers;
// the task queue
std::queue< std::function<void()> > tasks;
// synchronization
std::mutex queue_mutex;
std::condition_variable condition;
bool stop;
};
// the constructor just launches some amount of workers
inline ThreadPool::ThreadPool(size_t threads)
: stop(false)
{
for(size_t i = 0;i<threads;++i)
workers.emplace_back(
[this]
{
for(;;)
{
std::function<void()> task;
{
std::unique_lock<std::mutex> lock(this->queue_mutex);
this->condition.wait(lock,
[this]{ return this->stop || !this->tasks.empty();
});
if(this->stop && this->tasks.empty())
return;
task = std::move(this->tasks.front());
this->tasks.pop();
}
task();
}
}
);
}
// add new work item to the pool
template<class F, class... Args>
auto ThreadPool::enqueue(F&& f, Args&&... args)
-> std::future<typename std::result_of<F(Args...)>::type>
{
using return_type = typename std::result_of<F(Args...)>::type;
auto task = std::make_shared< std::packaged_task<return_type()> >(
std::bind(std::forward<F>(f), std::forward<Args>(args)...)
);
std::future<return_type> res = task->get_future();
{
std::unique_lock<std::mutex> lock(queue_mutex);
// don't allow enqueueing after stopping the pool
if(stop)
throw std::runtime_error("enqueue on stopped ThreadPool");
tasks.emplace([task](){ (*task)(); });
}
condition.notify_one();
return res;
}
// the destructor joins all threads
inline ThreadPool::~ThreadPool()
{
{
std::unique_lock<std::mutex> lock(queue_mutex);
stop = true;
}
condition.notify_all();
for(std::thread &worker: workers)
worker.join();
}
#endif
-------------------------------------------------------------------
List admin: https://cool.haxx.se/list/listinfo/curl-library
Etiquette: https://curl.haxx.se/mail/etiquette.html