ben 2003/11/03 05:25:01
Modified: . CHANGES Makefile.in configure.in
include apr_atomic.h apr_errno.h
test Makefile.in test_apr.h testall.c
Added: include apr_random.h
random/unix Makefile.in apr_random.c sha2.c sha2.h
sha2_glue.c
test testrand2.c
Log:
Start of new PRNG.
Revision Changes Path
1.438 +5 -0 apr/CHANGES
Index: CHANGES
===================================================================
RCS file: /home/cvs/apr/CHANGES,v
retrieving revision 1.437
retrieving revision 1.438
diff -u -r1.437 -r1.438
--- CHANGES 26 Oct 2003 23:22:16 -0000 1.437
+++ CHANGES 3 Nov 2003 13:25:00 -0000 1.438
@@ -1,5 +1,10 @@
Changes with APR 1.0
+ *) Add a new PRNG. Note that the implementation of SHA-256 is a
+ stop-gap pending snarfing the SHA-1 implementation from apr-util
+ and upgrading it to do SHA-256. Not yet ready for prime time.
+ [Ben Laurie]
+
*) Added new versions of the apr_atomic functions for
use with 32-bit ints [Brian Pane]
1.89 +3 -0 apr/Makefile.in
Index: Makefile.in
===================================================================
RCS file: /home/cvs/apr/Makefile.in,v
retrieving revision 1.88
retrieving revision 1.89
diff -u -r1.88 -r1.89
--- Makefile.in 29 Sep 2003 14:20:02 -0000 1.88
+++ Makefile.in 3 Nov 2003 13:25:00 -0000 1.89
@@ -133,6 +133,9 @@
check: $(TARGET_LIB)
(cd test && $(MAKE) check)
+etags:
+ etags `find . -name '*.[ch]'`
+
# DO NOT REMOVE
docs: $(INCDIR)/*.h
1.547 +1 -1 apr/configure.in
Index: configure.in
===================================================================
RCS file: /home/cvs/apr/configure.in,v
retrieving revision 1.546
retrieving revision 1.547
diff -u -r1.546 -r1.547
--- configure.in 29 Oct 2003 12:07:44 -0000 1.546
+++ configure.in 3 Nov 2003 13:25:00 -0000 1.547
@@ -100,7 +100,7 @@
DEFAULT_OSDIR="unix"
echo "(Default will be ${DEFAULT_OSDIR})"
-apr_modules="file_io network_io threadproc misc locks time mmap shmem user
memory atomic poll support"
+apr_modules="file_io network_io threadproc misc locks time mmap shmem user
memory atomic poll support random"
dnl Checks for programs.
AC_PROG_MAKE_SET
1.61 +1 -1 apr/include/apr_atomic.h
Index: apr_atomic.h
===================================================================
RCS file: /home/cvs/apr/include/apr_atomic.h,v
retrieving revision 1.60
retrieving revision 1.61
diff -u -r1.60 -r1.61
--- apr_atomic.h 15 Oct 2003 21:33:22 -0000 1.60
+++ apr_atomic.h 3 Nov 2003 13:25:00 -0000 1.61
@@ -337,7 +337,7 @@
#define apr_atomic_add32(mem, val) apr_atomic_add(mem, val)
#define apr_atomic_dec32(mem) apr_atomic_dec(mem)
#define apr_atomic_inc32(mem) apr_atomic_inc(mem)
-#define apr_atomic_set32(mem) apr_atomic_set(mem)
+#define apr_atomic_set32(mem,val) apr_atomic_set(mem,val)
#define apr_atomic_read32(mem) apr_atomic_read(mem)
#elif (defined(__linux__) || defined(__EMX__)) && defined(__i386__) &&
!APR_FORCE_ATOMIC_GENERIC
1.114 +2 -0 apr/include/apr_errno.h
Index: apr_errno.h
===================================================================
RCS file: /home/cvs/apr/include/apr_errno.h,v
retrieving revision 1.113
retrieving revision 1.114
diff -u -r1.113 -r1.114
--- apr_errno.h 23 Sep 2003 22:28:52 -0000 1.113
+++ apr_errno.h 3 Nov 2003 13:25:00 -0000 1.114
@@ -307,6 +307,8 @@
#define APR_ESYMNOTFOUND (APR_OS_START_ERROR + 26)
/** @see APR_STATUS_IS_EPROC_UNKNOWN */
#define APR_EPROC_UNKNOWN (APR_OS_START_ERROR + 27)
+
+#define APR_ENOTENOUGHENTROPY (APR_OS_START_ERROR + 28)
/** @} */
/**
1.1 apr/include/apr_random.h
Index: apr_random.h
===================================================================
/* ====================================================================
* The Apache Software License, Version 1.1
*
* Copyright (c) 2000-2003 The Apache Software Foundation. All rights
* reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. The end-user documentation included with the redistribution,
* if any, must include the following acknowledgment:
* "This product includes software developed by the
* Apache Software Foundation (http://www.apache.org/)."
* Alternately, this acknowledgment may appear in the software itself,
* if and wherever such third-party acknowledgments normally appear.
*
* 4. The names "Apache" and "Apache Software Foundation" must
* not be used to endorse or promote products derived from this
* software without prior written permission. For written
* permission, please contact [EMAIL PROTECTED]
*
* 5. Products derived from this software may not be called "Apache",
* nor may "Apache" appear in their name, without prior written
* permission of the Apache Software Foundation.
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
* ====================================================================
*
* This software consists of voluntary contributions made by many
* individuals on behalf of the Apache Software Foundation. For more
* information on the Apache Software Foundation, please see
* <http://www.apache.org/>.
*/
#ifndef APR_RANDOM_H
#define APR_RANDOM_H
#include <apr_pools.h>
typedef struct apr_crypto_hash_t apr_crypto_hash_t;
typedef void apr_crypto_hash_init_t(apr_crypto_hash_t *hash);
typedef void apr_crypto_hash_add_t(apr_crypto_hash_t *hash,const void *data,
apr_size_t bytes);
typedef void apr_crypto_hash_finish_t(apr_crypto_hash_t *hash,
unsigned char *result);
// FIXME: make this opaque
struct apr_crypto_hash_t
{
apr_crypto_hash_init_t *init;
apr_crypto_hash_add_t *add;
apr_crypto_hash_finish_t *finish;
apr_size_t size;
void *data;
};
apr_crypto_hash_t *apr_crypto_sha256_new(apr_pool_t *p);
typedef struct apr_random_t apr_random_t;
void apr_random_init(apr_random_t *g,apr_pool_t *p,
apr_crypto_hash_t *pool_hash,apr_crypto_hash_t *key_hash,
apr_crypto_hash_t *prng_hash);
apr_random_t *apr_random_standard_new(apr_pool_t *p);
void apr_random_add_entropy(apr_random_t *g,const void *entropy_,
apr_size_t bytes);
apr_status_t apr_random_insecure_bytes(apr_random_t *g,void *random,
apr_size_t bytes);
apr_status_t apr_random_secure_bytes(apr_random_t *g,void *random,
apr_size_t bytes);
void apr_random_barrier(apr_random_t *g);
apr_status_t apr_random_secure_ready(apr_random_t *r);
apr_status_t apr_random_insecure_ready(apr_random_t *r);
#endif /* ndef APR_RANDOM_H */
1.1 apr/random/unix/Makefile.in
Index: Makefile.in
===================================================================
srcdir = @srcdir@
VPATH = @srcdir@
TARGETS = \
apr_random.lo \
sha2.lo \
sha2_glue.lo
# bring in rules.mk for standard functionality
@INCLUDE_RULES@
INCDIR=../../include
OSDIR=$(INCDIR)/arch/@OSDIR@
DEFOSDIR=$(INCDIR)/arch/@DEFAULT_OSDIR@
INCLUDES=-I$(INCDIR) -I$(OSDIR) -I$(DEFOSDIR)
# DO NOT REMOVE
1.1 apr/random/unix/apr_random.c
Index: apr_random.c
===================================================================
/* ====================================================================
* The Apache Software License, Version 1.1
*
* Copyright (c) 2003 The Apache Software Foundation. All rights
* reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. The end-user documentation included with the redistribution,
* if any, must include the following acknowledgment:
* "This product includes software developed by the
* Apache Software Foundation (http://www.apache.org/)."
* Alternately, this acknowledgment may appear in the software itself,
* if and wherever such third-party acknowledgments normally appear.
*
* 4. The names "Apache" and "Apache Software Foundation" must
* not be used to endorse or promote products derived from this
* software without prior written permission. For written
* permission, please contact [EMAIL PROTECTED]
*
* 5. Products derived from this software may not be called "Apache",
* nor may "Apache" appear in their name, without prior written
* permission of the Apache Software Foundation.
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
* ====================================================================
*
* This software consists of voluntary contributions made by many
* individuals on behalf of the Apache Software Foundation. For more
* information on the Apache Software Foundation, please see
* <http://www.apache.org/>.
*/
/*
* See the paper "???" by Ben Laurie for an explanation of this PRNG.
*/
#include "apr.h"
#include "apr_pools.h"
#include "apr_random.h"
#include <assert.h>
#define min(a,b) ((a) < (b) ? (a) : (b))
#define APR_RANDOM_DEFAULT_POOLS 32
#define APR_RANDOM_DEFAULT_REHASH_SIZE 1024
#define APR_RANDOM_DEFAULT_RESEED_SIZE 32
#define APR_RANDOM_DEFAULT_HASH_SECRET_SIZE 32
#define APR_RANDOM_DEFAULT_G_FOR_INSECURE 32
#define APR_RANDOM_DEFAULT_G_FOR_SECURE 320
typedef struct apr_random_pool_t
{
unsigned char *pool;
int bytes;
int pool_size;
} apr_random_pool_t;
#define hash_init(h) (h)->init(h)
#define hash_add(h,b,n) (h)->add(h,b,n)
#define hash_finish(h,r) (h)->finish(h,r)
#define hash(h,r,b,n) hash_init(h),hash_add(h,b,n),hash_finish(h,r)
#define crypt_setkey(c,k) (c)->set_key((c)->data,k)
#define crypt_crypt(c,out,in) (c)->crypt((c)->date,out,in)
struct apr_random_t
{
apr_pool_t *apr_pool;
apr_crypto_hash_t *pool_hash;
unsigned int npools;
apr_random_pool_t *pools;
unsigned int next_pool;
unsigned int generation;
apr_size_t rehash_size;
apr_size_t reseed_size;
apr_crypto_hash_t *key_hash;
#define K_size(g) ((g)->key_hash->size)
apr_crypto_hash_t *prng_hash;
#define B_size(g) ((g)->prng_hash->size)
unsigned char *H;
unsigned char *H_waiting;
#define H_size(g) (B_size(g)+K_size(g))
unsigned char *randomness;
apr_size_t random_bytes;
unsigned int g_for_insecure;
unsigned int g_for_secure;
unsigned int secure_base;
unsigned char insecure_started:1;
unsigned char secure_started:1;
};
void apr_random_init(apr_random_t *g,apr_pool_t *p,
apr_crypto_hash_t *pool_hash,apr_crypto_hash_t *key_hash,
apr_crypto_hash_t *prng_hash)
{
int n;
g->apr_pool=p;
g->pool_hash=pool_hash;
g->key_hash=key_hash;
g->prng_hash=prng_hash;
g->npools=APR_RANDOM_DEFAULT_POOLS;
g->pools=apr_palloc(p,g->npools*sizeof *g->pools);
for(n=0 ; n < g->npools ; ++n)
{
g->pools[n].bytes=g->pools[n].pool_size=0;
g->pools[n].pool=NULL;
}
g->next_pool=0;
g->generation=0;
g->rehash_size=APR_RANDOM_DEFAULT_REHASH_SIZE;
/* Ensure that the rehash size is twice the size of the pool hasher */
g->rehash_size=((g->rehash_size+2*g->pool_hash->size-1)/g->pool_hash->size
/2)*g->pool_hash->size*2;
g->reseed_size=APR_RANDOM_DEFAULT_RESEED_SIZE;
g->prng_hash=prng_hash;
g->H=apr_palloc(p,H_size(g));
g->H_waiting=apr_palloc(p,H_size(g));
g->randomness=apr_palloc(p,B_size(g));
g->random_bytes=0;
g->g_for_insecure=APR_RANDOM_DEFAULT_G_FOR_INSECURE;
g->secure_base=0;
g->g_for_secure=APR_RANDOM_DEFAULT_G_FOR_SECURE;
g->secure_started=g->insecure_started=0;
}
apr_random_t *apr_random_standard_new(apr_pool_t *p)
{
apr_random_t *r=apr_palloc(p,sizeof *r);
apr_random_init(r,p,apr_crypto_sha256_new(p),apr_crypto_sha256_new(p),
apr_crypto_sha256_new(p));
return r;
}
static void rekey(apr_random_t *g)
{
int n;
unsigned char *H=(g->insecure_started && !g->secure_started) ?
g->H_waiting
: g->H;
hash_init(g->key_hash);
hash_add(g->key_hash,H,H_size(g));
for(n=0 ; n < g->npools && (n == 0 || g->generation&(1 << (n-1)))
; ++n)
{
hash_add(g->key_hash,g->pools[n].pool,g->pools[n].bytes);
g->pools[n].bytes=0;
}
hash_finish(g->key_hash,H+B_size(g));
++g->generation;
if(!g->insecure_started && g->generation > g->g_for_insecure)
{
g->insecure_started=1;
if(!g->secure_started)
{
memcpy(g->H_waiting,g->H,H_size(g));
g->secure_base=g->generation;
}
}
if(!g->secure_started && g->generation > g->secure_base+g->g_for_secure)
{
g->secure_started=1;
memcpy(g->H,g->H_waiting,H_size(g));
}
}
void apr_random_add_entropy(apr_random_t *g,const void *entropy_,
apr_size_t bytes)
{
int n;
const unsigned char *entropy=entropy_;
for(n=0 ; n < bytes ; ++n)
{
apr_random_pool_t *p=&g->pools[g->next_pool];
if(++g->next_pool == g->npools)
g->next_pool=0;
if(p->pool_size < p->bytes+1)
{
unsigned char *np=apr_palloc(g->apr_pool,(p->bytes+1)*2);
memcpy(np,p->pool,p->bytes);
p->pool=np;
p->pool_size=(p->bytes+1)*2;
}
p->pool[p->bytes++]=entropy[n];
if(p->bytes == g->rehash_size)
{
int r;
for(r=0 ; r < p->bytes/2 ; r+=g->pool_hash->size)
hash(g->pool_hash,p->pool+r,p->pool+r*2,g->pool_hash->size*2);
p->bytes/=2;
}
assert(p->bytes < g->rehash_size);
}
if(g->pools[0].bytes >= g->reseed_size)
rekey(g);
}
// This will give g->B_size bytes of randomness
static void apr_random_block(apr_random_t *g,unsigned char *random)
{
// FIXME: in principle, these are different hashes
hash(g->prng_hash,g->H,g->H,H_size(g));
hash(g->prng_hash,random,g->H,B_size(g));
}
static void apr_random_bytes(apr_random_t *g,unsigned char *random,
apr_size_t bytes)
{
apr_size_t n;
for(n=0 ; n < bytes ; )
{
int l;
if(g->random_bytes == 0)
{
apr_random_block(g,g->randomness);
g->random_bytes=B_size(g);
}
l=min(bytes-n,g->random_bytes);
memcpy(&random[n],g->randomness+B_size(g)-g->random_bytes,l);
g->random_bytes-=l;
n+=l;
}
}
apr_status_t apr_random_secure_bytes(apr_random_t *g,void *random,
apr_size_t bytes)
{
if(!g->secure_started)
return APR_ENOTENOUGHENTROPY;
apr_random_bytes(g,random,bytes);
return APR_SUCCESS;
}
apr_status_t apr_random_insecure_bytes(apr_random_t *g,void *random,
apr_size_t bytes)
{
if(!g->insecure_started)
return APR_ENOTENOUGHENTROPY;
apr_random_bytes(g,random,bytes);
return APR_SUCCESS;
}
void apr_random_barrier(apr_random_t *g)
{
g->secure_started=0;
g->secure_base=g->generation;
}
apr_status_t apr_random_secure_ready(apr_random_t *r)
{
if(!r->secure_started)
return APR_ENOTENOUGHENTROPY;
return APR_SUCCESS;
}
apr_status_t apr_random_insecure_ready(apr_random_t *r)
{
if(!r->insecure_started)
return APR_ENOTENOUGHENTROPY;
return APR_SUCCESS;
}
1.1 apr/random/unix/sha2.c
Index: sha2.c
===================================================================
/*
* FILE: sha2.c
* AUTHOR: Aaron D. Gifford <[EMAIL PROTECTED]>
*
* Copyright (c) 2000-2001, Aaron D. Gifford
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the copyright holder nor the names of contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $Id: sha2.c,v 1.1 2003/11/03 13:25:00 ben Exp $
*/
#include <string.h> /* memcpy()/memset() or bcopy()/bzero() */
#include <assert.h> /* assert() */
#include "sha2.h"
/*
* ASSERT NOTE:
* Some sanity checking code is included using assert(). On my FreeBSD
* system, this additional code can be removed by compiling with NDEBUG
* defined. Check your own systems manpage on assert() to see how to
* compile WITHOUT the sanity checking code on your system.
*
* UNROLLED TRANSFORM LOOP NOTE:
* You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
* loop version for the hash transform rounds (defined using macros
* later in this file). Either define on the command line, for example:
*
* cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
*
* or define below:
*
* #define SHA2_UNROLL_TRANSFORM
*
*/
/*** SHA-256/384/512 Machine Architecture Definitions *****************/
/*
* BYTE_ORDER NOTE:
*
* Please make sure that your system defines BYTE_ORDER. If your
* architecture is little-endian, make sure it also defines
* LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
* equivilent.
*
* If your system does not define the above, then you can do so by
* hand like this:
*
* #define LITTLE_ENDIAN 1234
* #define BIG_ENDIAN 4321
*
* And for little-endian machines, add:
*
* #define BYTE_ORDER LITTLE_ENDIAN
*
* Or for big-endian machines:
*
* #define BYTE_ORDER BIG_ENDIAN
*
* The FreeBSD machine this was written on defines BYTE_ORDER
* appropriately by including <sys/types.h> (which in turn includes
* <machine/endian.h> where the appropriate definitions are actually
* made).
*/
#if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER !=
BIG_ENDIAN)
#error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN
#endif
/*
* Define the followingsha2_* types to types of the correct length on
* the native archtecture. Most BSD systems and Linux define u_intXX_t
* types. Machines with very recent ANSI C headers, can use the
* uintXX_t definintions from inttypes.h by defining SHA2_USE_INTTYPES_H
* during compile or in the sha.h header file.
*
* Machines that support neither u_intXX_t nor inttypes.h's uintXX_t
* will need to define these three typedefs below (and the appropriate
* ones in sha.h too) by hand according to their system architecture.
*
* Thank you, Jun-ichiro itojun Hagino, for suggesting using u_intXX_t
* types and pointing out recent ANSI C support for uintXX_t in inttypes.h.
*/
#ifdef SHA2_USE_INTTYPES_H
typedef uint8_t sha2_byte; /* Exactly 1 byte */
typedef uint32_t sha2_word32; /* Exactly 4 bytes */
typedef uint64_t sha2_word64; /* Exactly 8 bytes */
#else /* SHA2_USE_INTTYPES_H */
typedef u_int8_t sha2_byte; /* Exactly 1 byte */
typedef u_int32_t sha2_word32; /* Exactly 4 bytes */
typedef u_int64_t sha2_word64; /* Exactly 8 bytes */
#endif /* SHA2_USE_INTTYPES_H */
/*** SHA-256/384/512 Various Length Definitions ***********************/
/* NOTE: Most of these are in sha2.h */
#define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8)
#define SHA384_SHORT_BLOCK_LENGTH (SHA384_BLOCK_LENGTH - 16)
#define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16)
/*** ENDIAN REVERSAL MACROS *******************************************/
#if BYTE_ORDER == LITTLE_ENDIAN
#define REVERSE32(w,x) { \
sha2_word32 tmp = (w); \
tmp = (tmp >> 16) | (tmp << 16); \
(x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \
}
#define REVERSE64(w,x) { \
sha2_word64 tmp = (w); \
tmp = (tmp >> 32) | (tmp << 32); \
tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \
((tmp & 0x00ff00ff00ff00ffULL) << 8); \
(x) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | \
((tmp & 0x0000ffff0000ffffULL) << 16); \
}
#endif /* BYTE_ORDER == LITTLE_ENDIAN */
/*
* Macro for incrementally adding the unsigned 64-bit integer n to the
* unsigned 128-bit integer (represented using a two-element array of
* 64-bit words):
*/
#define ADDINC128(w,n) { \
(w)[0] += (sha2_word64)(n); \
if ((w)[0] < (n)) { \
(w)[1]++; \
} \
}
/*
* Macros for copying blocks of memory and for zeroing out ranges
* of memory. Using these macros makes it easy to switch from
* using memset()/memcpy() and using bzero()/bcopy().
*
* Please define either SHA2_USE_MEMSET_MEMCPY or define
* SHA2_USE_BZERO_BCOPY depending on which function set you
* choose to use:
*/
#if !defined(SHA2_USE_MEMSET_MEMCPY) && !defined(SHA2_USE_BZERO_BCOPY)
/* Default to memset()/memcpy() if no option is specified */
#define SHA2_USE_MEMSET_MEMCPY 1
#endif
#if defined(SHA2_USE_MEMSET_MEMCPY) && defined(SHA2_USE_BZERO_BCOPY)
/* Abort with an error if BOTH options are defined */
#error Define either SHA2_USE_MEMSET_MEMCPY or SHA2_USE_BZERO_BCOPY, not both!
#endif
#ifdef SHA2_USE_MEMSET_MEMCPY
#define MEMSET_BZERO(p,l) memset((p), 0, (l))
#define MEMCPY_BCOPY(d,s,l) memcpy((d), (s), (l))
#endif
#ifdef SHA2_USE_BZERO_BCOPY
#define MEMSET_BZERO(p,l) bzero((p), (l))
#define MEMCPY_BCOPY(d,s,l) bcopy((s), (d), (l))
#endif
/*** THE SIX LOGICAL FUNCTIONS ****************************************/
/*
* Bit shifting and rotation (used by the six SHA-XYZ logical functions:
*
* NOTE: The naming of R and S appears backwards here (R is a SHIFT and
* S is a ROTATION) because the SHA-256/384/512 description document
* (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
* same "backwards" definition.
*/
/* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
#define R(b,x) ((x) >> (b))
/* 32-bit Rotate-right (used in SHA-256): */
#define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b))))
/* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
#define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b))))
/* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
#define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
#define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
/* Four of six logical functions used in SHA-256: */
#define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x)))
#define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x)))
#define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x)))
#define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x)))
/* Four of six logical functions used in SHA-384 and SHA-512: */
#define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
#define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
#define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x)))
#define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x)))
/*** INTERNAL FUNCTION PROTOTYPES *************************************/
/* NOTE: These should not be accessed directly from outside this
* library -- they are intended for private internal visibility/use
* only.
*/
void SHA512_Last(SHA512_CTX*);
void SHA256_Transform(SHA256_CTX*, const sha2_word32*);
void SHA512_Transform(SHA512_CTX*, const sha2_word64*);
/*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
/* Hash constant words K for SHA-256: */
const static sha2_word32 K256[64] = {
0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
};
/* Initial hash value H for SHA-256: */
const static sha2_word32 sha256_initial_hash_value[8] = {
0x6a09e667UL,
0xbb67ae85UL,
0x3c6ef372UL,
0xa54ff53aUL,
0x510e527fUL,
0x9b05688cUL,
0x1f83d9abUL,
0x5be0cd19UL
};
/* Hash constant words K for SHA-384 and SHA-512: */
const static sha2_word64 K512[80] = {
0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
};
/* Initial hash value H for SHA-384 */
const static sha2_word64 sha384_initial_hash_value[8] = {
0xcbbb9d5dc1059ed8ULL,
0x629a292a367cd507ULL,
0x9159015a3070dd17ULL,
0x152fecd8f70e5939ULL,
0x67332667ffc00b31ULL,
0x8eb44a8768581511ULL,
0xdb0c2e0d64f98fa7ULL,
0x47b5481dbefa4fa4ULL
};
/* Initial hash value H for SHA-512 */
const static sha2_word64 sha512_initial_hash_value[8] = {
0x6a09e667f3bcc908ULL,
0xbb67ae8584caa73bULL,
0x3c6ef372fe94f82bULL,
0xa54ff53a5f1d36f1ULL,
0x510e527fade682d1ULL,
0x9b05688c2b3e6c1fULL,
0x1f83d9abfb41bd6bULL,
0x5be0cd19137e2179ULL
};
/*
* Constant used by SHA256/384/512_End() functions for converting the
* digest to a readable hexadecimal character string:
*/
static const char *sha2_hex_digits = "0123456789abcdef";
/*** SHA-256: *********************************************************/
void SHA256_Init(SHA256_CTX* context) {
if (context == (SHA256_CTX*)0) {
return;
}
MEMCPY_BCOPY(context->state, sha256_initial_hash_value,
SHA256_DIGEST_LENGTH);
MEMSET_BZERO(context->buffer, SHA256_BLOCK_LENGTH);
context->bitcount = 0;
}
#ifdef SHA2_UNROLL_TRANSFORM
/* Unrolled SHA-256 round macros: */
#if BYTE_ORDER == LITTLE_ENDIAN
#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
REVERSE32(*data++, W256[j]); \
T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
K256[j] + W256[j]; \
(d) += T1; \
(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
j++
#else /* BYTE_ORDER == LITTLE_ENDIAN */
#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
K256[j] + (W256[j] = *data++); \
(d) += T1; \
(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
j++
#endif /* BYTE_ORDER == LITTLE_ENDIAN */
#define ROUND256(a,b,c,d,e,f,g,h) \
s0 = W256[(j+1)&0x0f]; \
s0 = sigma0_256(s0); \
s1 = W256[(j+14)&0x0f]; \
s1 = sigma1_256(s1); \
T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \
(W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
(d) += T1; \
(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
j++
void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
sha2_word32 a, b, c, d, e, f, g, h, s0, s1;
sha2_word32 T1, *W256;
int j;
W256 = (sha2_word32*)context->buffer;
/* Initialize registers with the prev. intermediate value */
a = context->state[0];
b = context->state[1];
c = context->state[2];
d = context->state[3];
e = context->state[4];
f = context->state[5];
g = context->state[6];
h = context->state[7];
j = 0;
do {
/* Rounds 0 to 15 (unrolled): */
ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
} while (j < 16);
/* Now for the remaining rounds to 64: */
do {
ROUND256(a,b,c,d,e,f,g,h);
ROUND256(h,a,b,c,d,e,f,g);
ROUND256(g,h,a,b,c,d,e,f);
ROUND256(f,g,h,a,b,c,d,e);
ROUND256(e,f,g,h,a,b,c,d);
ROUND256(d,e,f,g,h,a,b,c);
ROUND256(c,d,e,f,g,h,a,b);
ROUND256(b,c,d,e,f,g,h,a);
} while (j < 64);
/* Compute the current intermediate hash value */
context->state[0] += a;
context->state[1] += b;
context->state[2] += c;
context->state[3] += d;
context->state[4] += e;
context->state[5] += f;
context->state[6] += g;
context->state[7] += h;
/* Clean up */
a = b = c = d = e = f = g = h = T1 = 0;
}
#else /* SHA2_UNROLL_TRANSFORM */
void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
sha2_word32 a, b, c, d, e, f, g, h, s0, s1;
sha2_word32 T1, T2, *W256;
int j;
W256 = (sha2_word32*)context->buffer;
/* Initialize registers with the prev. intermediate value */
a = context->state[0];
b = context->state[1];
c = context->state[2];
d = context->state[3];
e = context->state[4];
f = context->state[5];
g = context->state[6];
h = context->state[7];
j = 0;
do {
#if BYTE_ORDER == LITTLE_ENDIAN
/* Copy data while converting to host byte order */
REVERSE32(*data++,W256[j]);
/* Apply the SHA-256 compression function to update a..h */
T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
#else /* BYTE_ORDER == LITTLE_ENDIAN */
/* Apply the SHA-256 compression function to update a..h with
copy */
T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j] =
*data++);
#endif /* BYTE_ORDER == LITTLE_ENDIAN */
T2 = Sigma0_256(a) + Maj(a, b, c);
h = g;
g = f;
f = e;
e = d + T1;
d = c;
c = b;
b = a;
a = T1 + T2;
j++;
} while (j < 16);
do {
/* Part of the message block expansion: */
s0 = W256[(j+1)&0x0f];
s0 = sigma0_256(s0);
s1 = W256[(j+14)&0x0f];
s1 = sigma1_256(s1);
/* Apply the SHA-256 compression function to update a..h */
T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
(W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
T2 = Sigma0_256(a) + Maj(a, b, c);
h = g;
g = f;
f = e;
e = d + T1;
d = c;
c = b;
b = a;
a = T1 + T2;
j++;
} while (j < 64);
/* Compute the current intermediate hash value */
context->state[0] += a;
context->state[1] += b;
context->state[2] += c;
context->state[3] += d;
context->state[4] += e;
context->state[5] += f;
context->state[6] += g;
context->state[7] += h;
/* Clean up */
a = b = c = d = e = f = g = h = T1 = T2 = 0;
}
#endif /* SHA2_UNROLL_TRANSFORM */
void SHA256_Update(SHA256_CTX* context, const sha2_byte *data, size_t len) {
unsigned int freespace, usedspace;
if (len == 0) {
/* Calling with no data is valid - we do nothing */
return;
}
/* Sanity check: */
assert(context != (SHA256_CTX*)0 && data != (sha2_byte*)0);
usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
if (usedspace > 0) {
/* Calculate how much free space is available in the buffer */
freespace = SHA256_BLOCK_LENGTH - usedspace;
if (len >= freespace) {
/* Fill the buffer completely and process it */
MEMCPY_BCOPY(&context->buffer[usedspace], data,
freespace);
context->bitcount += freespace << 3;
len -= freespace;
data += freespace;
SHA256_Transform(context,
(sha2_word32*)context->buffer);
} else {
/* The buffer is not yet full */
MEMCPY_BCOPY(&context->buffer[usedspace], data, len);
context->bitcount += len << 3;
/* Clean up: */
usedspace = freespace = 0;
return;
}
}
while (len >= SHA256_BLOCK_LENGTH) {
/* Process as many complete blocks as we can */
SHA256_Transform(context, (sha2_word32*)data);
context->bitcount += SHA256_BLOCK_LENGTH << 3;
len -= SHA256_BLOCK_LENGTH;
data += SHA256_BLOCK_LENGTH;
}
if (len > 0) {
/* There's left-overs, so save 'em */
MEMCPY_BCOPY(context->buffer, data, len);
context->bitcount += len << 3;
}
/* Clean up: */
usedspace = freespace = 0;
}
void SHA256_Final(sha2_byte digest[], SHA256_CTX* context) {
sha2_word32 *d = (sha2_word32*)digest;
unsigned int usedspace;
/* Sanity check: */
assert(context != (SHA256_CTX*)0);
/* If no digest buffer is passed, we don't bother doing this: */
if (digest != (sha2_byte*)0) {
usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
#if BYTE_ORDER == LITTLE_ENDIAN
/* Convert FROM host byte order */
REVERSE64(context->bitcount,context->bitcount);
#endif
if (usedspace > 0) {
/* Begin padding with a 1 bit: */
context->buffer[usedspace++] = 0x80;
if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
/* Set-up for the last transform: */
MEMSET_BZERO(&context->buffer[usedspace],
SHA256_SHORT_BLOCK_LENGTH - usedspace);
} else {
if (usedspace < SHA256_BLOCK_LENGTH) {
MEMSET_BZERO(&context->buffer[usedspace], SHA256_BLOCK_LENGTH - usedspace);
}
/* Do second-to-last transform: */
SHA256_Transform(context,
(sha2_word32*)context->buffer);
/* And set-up for the last transform: */
MEMSET_BZERO(context->buffer,
SHA256_SHORT_BLOCK_LENGTH);
}
} else {
/* Set-up for the last transform: */
MEMSET_BZERO(context->buffer,
SHA256_SHORT_BLOCK_LENGTH);
/* Begin padding with a 1 bit: */
*context->buffer = 0x80;
}
/* Set the bit count: */
*(sha2_word64*)&context->buffer[SHA256_SHORT_BLOCK_LENGTH] =
context->bitcount;
/* Final transform: */
SHA256_Transform(context, (sha2_word32*)context->buffer);
#if BYTE_ORDER == LITTLE_ENDIAN
{
/* Convert TO host byte order */
int j;
for (j = 0; j < 8; j++) {
REVERSE32(context->state[j],context->state[j]);
*d++ = context->state[j];
}
}
#else
MEMCPY_BCOPY(d, context->state, SHA256_DIGEST_LENGTH);
#endif
}
/* Clean up state data: */
MEMSET_BZERO(context, sizeof(context));
usedspace = 0;
}
char *SHA256_End(SHA256_CTX* context, char buffer[]) {
sha2_byte digest[SHA256_DIGEST_LENGTH], *d = digest;
int i;
/* Sanity check: */
assert(context != (SHA256_CTX*)0);
if (buffer != (char*)0) {
SHA256_Final(digest, context);
for (i = 0; i < SHA256_DIGEST_LENGTH; i++) {
*buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
*buffer++ = sha2_hex_digits[*d & 0x0f];
d++;
}
*buffer = (char)0;
} else {
MEMSET_BZERO(context, sizeof(context));
}
MEMSET_BZERO(digest, SHA256_DIGEST_LENGTH);
return buffer;
}
char* SHA256_Data(const sha2_byte* data, size_t len, char
digest[SHA256_DIGEST_STRING_LENGTH]) {
SHA256_CTX context;
SHA256_Init(&context);
SHA256_Update(&context, data, len);
return SHA256_End(&context, digest);
}
/*** SHA-512: *********************************************************/
void SHA512_Init(SHA512_CTX* context) {
if (context == (SHA512_CTX*)0) {
return;
}
MEMCPY_BCOPY(context->state, sha512_initial_hash_value,
SHA512_DIGEST_LENGTH);
MEMSET_BZERO(context->buffer, SHA512_BLOCK_LENGTH);
context->bitcount[0] = context->bitcount[1] = 0;
}
#ifdef SHA2_UNROLL_TRANSFORM
/* Unrolled SHA-512 round macros: */
#if BYTE_ORDER == LITTLE_ENDIAN
#define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \
REVERSE64(*data++, W512[j]); \
T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
K512[j] + W512[j]; \
(d) += T1, \
(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \
j++
#else /* BYTE_ORDER == LITTLE_ENDIAN */
#define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \
T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
K512[j] + (W512[j] = *data++); \
(d) += T1; \
(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
j++
#endif /* BYTE_ORDER == LITTLE_ENDIAN */
#define ROUND512(a,b,c,d,e,f,g,h) \
s0 = W512[(j+1)&0x0f]; \
s0 = sigma0_512(s0); \
s1 = W512[(j+14)&0x0f]; \
s1 = sigma1_512(s1); \
T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \
(W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
(d) += T1; \
(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
j++
void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) {
sha2_word64 a, b, c, d, e, f, g, h, s0, s1;
sha2_word64 T1, *W512 = (sha2_word64*)context->buffer;
int j;
/* Initialize registers with the prev. intermediate value */
a = context->state[0];
b = context->state[1];
c = context->state[2];
d = context->state[3];
e = context->state[4];
f = context->state[5];
g = context->state[6];
h = context->state[7];
j = 0;
do {
ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
} while (j < 16);
/* Now for the remaining rounds up to 79: */
do {
ROUND512(a,b,c,d,e,f,g,h);
ROUND512(h,a,b,c,d,e,f,g);
ROUND512(g,h,a,b,c,d,e,f);
ROUND512(f,g,h,a,b,c,d,e);
ROUND512(e,f,g,h,a,b,c,d);
ROUND512(d,e,f,g,h,a,b,c);
ROUND512(c,d,e,f,g,h,a,b);
ROUND512(b,c,d,e,f,g,h,a);
} while (j < 80);
/* Compute the current intermediate hash value */
context->state[0] += a;
context->state[1] += b;
context->state[2] += c;
context->state[3] += d;
context->state[4] += e;
context->state[5] += f;
context->state[6] += g;
context->state[7] += h;
/* Clean up */
a = b = c = d = e = f = g = h = T1 = 0;
}
#else /* SHA2_UNROLL_TRANSFORM */
void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) {
sha2_word64 a, b, c, d, e, f, g, h, s0, s1;
sha2_word64 T1, T2, *W512 = (sha2_word64*)context->buffer;
int j;
/* Initialize registers with the prev. intermediate value */
a = context->state[0];
b = context->state[1];
c = context->state[2];
d = context->state[3];
e = context->state[4];
f = context->state[5];
g = context->state[6];
h = context->state[7];
j = 0;
do {
#if BYTE_ORDER == LITTLE_ENDIAN
/* Convert TO host byte order */
REVERSE64(*data++, W512[j]);
/* Apply the SHA-512 compression function to update a..h */
T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
#else /* BYTE_ORDER == LITTLE_ENDIAN */
/* Apply the SHA-512 compression function to update a..h with
copy */
T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j] =
*data++);
#endif /* BYTE_ORDER == LITTLE_ENDIAN */
T2 = Sigma0_512(a) + Maj(a, b, c);
h = g;
g = f;
f = e;
e = d + T1;
d = c;
c = b;
b = a;
a = T1 + T2;
j++;
} while (j < 16);
do {
/* Part of the message block expansion: */
s0 = W512[(j+1)&0x0f];
s0 = sigma0_512(s0);
s1 = W512[(j+14)&0x0f];
s1 = sigma1_512(s1);
/* Apply the SHA-512 compression function to update a..h */
T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
(W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
T2 = Sigma0_512(a) + Maj(a, b, c);
h = g;
g = f;
f = e;
e = d + T1;
d = c;
c = b;
b = a;
a = T1 + T2;
j++;
} while (j < 80);
/* Compute the current intermediate hash value */
context->state[0] += a;
context->state[1] += b;
context->state[2] += c;
context->state[3] += d;
context->state[4] += e;
context->state[5] += f;
context->state[6] += g;
context->state[7] += h;
/* Clean up */
a = b = c = d = e = f = g = h = T1 = T2 = 0;
}
#endif /* SHA2_UNROLL_TRANSFORM */
void SHA512_Update(SHA512_CTX* context, const sha2_byte *data, size_t len) {
unsigned int freespace, usedspace;
if (len == 0) {
/* Calling with no data is valid - we do nothing */
return;
}
/* Sanity check: */
assert(context != (SHA512_CTX*)0 && data != (sha2_byte*)0);
usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
if (usedspace > 0) {
/* Calculate how much free space is available in the buffer */
freespace = SHA512_BLOCK_LENGTH - usedspace;
if (len >= freespace) {
/* Fill the buffer completely and process it */
MEMCPY_BCOPY(&context->buffer[usedspace], data,
freespace);
ADDINC128(context->bitcount, freespace << 3);
len -= freespace;
data += freespace;
SHA512_Transform(context,
(sha2_word64*)context->buffer);
} else {
/* The buffer is not yet full */
MEMCPY_BCOPY(&context->buffer[usedspace], data, len);
ADDINC128(context->bitcount, len << 3);
/* Clean up: */
usedspace = freespace = 0;
return;
}
}
while (len >= SHA512_BLOCK_LENGTH) {
/* Process as many complete blocks as we can */
SHA512_Transform(context, (sha2_word64*)data);
ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
len -= SHA512_BLOCK_LENGTH;
data += SHA512_BLOCK_LENGTH;
}
if (len > 0) {
/* There's left-overs, so save 'em */
MEMCPY_BCOPY(context->buffer, data, len);
ADDINC128(context->bitcount, len << 3);
}
/* Clean up: */
usedspace = freespace = 0;
}
void SHA512_Last(SHA512_CTX* context) {
unsigned int usedspace;
usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
#if BYTE_ORDER == LITTLE_ENDIAN
/* Convert FROM host byte order */
REVERSE64(context->bitcount[0],context->bitcount[0]);
REVERSE64(context->bitcount[1],context->bitcount[1]);
#endif
if (usedspace > 0) {
/* Begin padding with a 1 bit: */
context->buffer[usedspace++] = 0x80;
if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) {
/* Set-up for the last transform: */
MEMSET_BZERO(&context->buffer[usedspace],
SHA512_SHORT_BLOCK_LENGTH - usedspace);
} else {
if (usedspace < SHA512_BLOCK_LENGTH) {
MEMSET_BZERO(&context->buffer[usedspace],
SHA512_BLOCK_LENGTH - usedspace);
}
/* Do second-to-last transform: */
SHA512_Transform(context,
(sha2_word64*)context->buffer);
/* And set-up for the last transform: */
MEMSET_BZERO(context->buffer, SHA512_BLOCK_LENGTH - 2);
}
} else {
/* Prepare for final transform: */
MEMSET_BZERO(context->buffer, SHA512_SHORT_BLOCK_LENGTH);
/* Begin padding with a 1 bit: */
*context->buffer = 0x80;
}
/* Store the length of input data (in bits): */
*(sha2_word64*)&context->buffer[SHA512_SHORT_BLOCK_LENGTH] =
context->bitcount[1];
*(sha2_word64*)&context->buffer[SHA512_SHORT_BLOCK_LENGTH+8] =
context->bitcount[0];
/* Final transform: */
SHA512_Transform(context, (sha2_word64*)context->buffer);
}
void SHA512_Final(sha2_byte digest[], SHA512_CTX* context) {
sha2_word64 *d = (sha2_word64*)digest;
/* Sanity check: */
assert(context != (SHA512_CTX*)0);
/* If no digest buffer is passed, we don't bother doing this: */
if (digest != (sha2_byte*)0) {
SHA512_Last(context);
/* Save the hash data for output: */
#if BYTE_ORDER == LITTLE_ENDIAN
{
/* Convert TO host byte order */
int j;
for (j = 0; j < 8; j++) {
REVERSE64(context->state[j],context->state[j]);
*d++ = context->state[j];
}
}
#else
MEMCPY_BCOPY(d, context->state, SHA512_DIGEST_LENGTH);
#endif
}
/* Zero out state data */
MEMSET_BZERO(context, sizeof(context));
}
char *SHA512_End(SHA512_CTX* context, char buffer[]) {
sha2_byte digest[SHA512_DIGEST_LENGTH], *d = digest;
int i;
/* Sanity check: */
assert(context != (SHA512_CTX*)0);
if (buffer != (char*)0) {
SHA512_Final(digest, context);
for (i = 0; i < SHA512_DIGEST_LENGTH; i++) {
*buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
*buffer++ = sha2_hex_digits[*d & 0x0f];
d++;
}
*buffer = (char)0;
} else {
MEMSET_BZERO(context, sizeof(context));
}
MEMSET_BZERO(digest, SHA512_DIGEST_LENGTH);
return buffer;
}
char* SHA512_Data(const sha2_byte* data, size_t len, char
digest[SHA512_DIGEST_STRING_LENGTH]) {
SHA512_CTX context;
SHA512_Init(&context);
SHA512_Update(&context, data, len);
return SHA512_End(&context, digest);
}
/*** SHA-384: *********************************************************/
void SHA384_Init(SHA384_CTX* context) {
if (context == (SHA384_CTX*)0) {
return;
}
MEMCPY_BCOPY(context->state, sha384_initial_hash_value,
SHA512_DIGEST_LENGTH);
MEMSET_BZERO(context->buffer, SHA384_BLOCK_LENGTH);
context->bitcount[0] = context->bitcount[1] = 0;
}
void SHA384_Update(SHA384_CTX* context, const sha2_byte* data, size_t len) {
SHA512_Update((SHA512_CTX*)context, data, len);
}
void SHA384_Final(sha2_byte digest[], SHA384_CTX* context) {
sha2_word64 *d = (sha2_word64*)digest;
/* Sanity check: */
assert(context != (SHA384_CTX*)0);
/* If no digest buffer is passed, we don't bother doing this: */
if (digest != (sha2_byte*)0) {
SHA512_Last((SHA512_CTX*)context);
/* Save the hash data for output: */
#if BYTE_ORDER == LITTLE_ENDIAN
{
/* Convert TO host byte order */
int j;
for (j = 0; j < 6; j++) {
REVERSE64(context->state[j],context->state[j]);
*d++ = context->state[j];
}
}
#else
MEMCPY_BCOPY(d, context->state, SHA384_DIGEST_LENGTH);
#endif
}
/* Zero out state data */
MEMSET_BZERO(context, sizeof(context));
}
char *SHA384_End(SHA384_CTX* context, char buffer[]) {
sha2_byte digest[SHA384_DIGEST_LENGTH], *d = digest;
int i;
/* Sanity check: */
assert(context != (SHA384_CTX*)0);
if (buffer != (char*)0) {
SHA384_Final(digest, context);
for (i = 0; i < SHA384_DIGEST_LENGTH; i++) {
*buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
*buffer++ = sha2_hex_digits[*d & 0x0f];
d++;
}
*buffer = (char)0;
} else {
MEMSET_BZERO(context, sizeof(context));
}
MEMSET_BZERO(digest, SHA384_DIGEST_LENGTH);
return buffer;
}
char* SHA384_Data(const sha2_byte* data, size_t len, char
digest[SHA384_DIGEST_STRING_LENGTH]) {
SHA384_CTX context;
SHA384_Init(&context);
SHA384_Update(&context, data, len);
return SHA384_End(&context, digest);
}
1.1 apr/random/unix/sha2.h
Index: sha2.h
===================================================================
/*
* FILE: sha2.h
* AUTHOR: Aaron D. Gifford <[EMAIL PROTECTED]>
*
* Copyright (c) 2000-2001, Aaron D. Gifford
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the copyright holder nor the names of contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $Id: sha2.h,v 1.1 2003/11/03 13:25:00 ben Exp $
*/
#ifndef __SHA2_H__
#define __SHA2_H__
#ifdef __cplusplus
extern "C" {
#endif
/*
* Import u_intXX_t size_t type definitions from system headers. You
* may need to change this, or define these things yourself in this
* file.
*/
#include <sys/types.h>
#ifdef SHA2_USE_INTTYPES_H
#include <inttypes.h>
#endif /* SHA2_USE_INTTYPES_H */
/*** SHA-256/384/512 Various Length Definitions ***********************/
#define SHA256_BLOCK_LENGTH 64
#define SHA256_DIGEST_LENGTH 32
#define SHA256_DIGEST_STRING_LENGTH (SHA256_DIGEST_LENGTH * 2 + 1)
#define SHA384_BLOCK_LENGTH 128
#define SHA384_DIGEST_LENGTH 48
#define SHA384_DIGEST_STRING_LENGTH (SHA384_DIGEST_LENGTH * 2 + 1)
#define SHA512_BLOCK_LENGTH 128
#define SHA512_DIGEST_LENGTH 64
#define SHA512_DIGEST_STRING_LENGTH (SHA512_DIGEST_LENGTH * 2 + 1)
/*** SHA-256/384/512 Context Structures *******************************/
/* NOTE: If your architecture does not define either u_intXX_t types or
* uintXX_t (from inttypes.h), you may need to define things by hand
* for your system:
*/
#if 0
typedef unsigned char u_int8_t; /* 1-byte (8-bits) */
typedef unsigned int u_int32_t; /* 4-bytes (32-bits) */
typedef unsigned long long u_int64_t; /* 8-bytes (64-bits) */
#endif
/*
* Most BSD systems already define u_intXX_t types, as does Linux.
* Some systems, however, like Compaq's Tru64 Unix instead can use
* uintXX_t types defined by very recent ANSI C standards and included
* in the file:
*
* #include <inttypes.h>
*
* If you choose to use <inttypes.h> then please define:
*
* #define SHA2_USE_INTTYPES_H
*
* Or on the command line during compile:
*
* cc -DSHA2_USE_INTTYPES_H ...
*/
#ifdef SHA2_USE_INTTYPES_H
typedef struct _SHA256_CTX {
uint32_t state[8];
uint64_t bitcount;
uint8_t buffer[SHA256_BLOCK_LENGTH];
} SHA256_CTX;
typedef struct _SHA512_CTX {
uint64_t state[8];
uint64_t bitcount[2];
uint8_t buffer[SHA512_BLOCK_LENGTH];
} SHA512_CTX;
#else /* SHA2_USE_INTTYPES_H */
typedef struct _SHA256_CTX {
u_int32_t state[8];
u_int64_t bitcount;
u_int8_t buffer[SHA256_BLOCK_LENGTH];
} SHA256_CTX;
typedef struct _SHA512_CTX {
u_int64_t state[8];
u_int64_t bitcount[2];
u_int8_t buffer[SHA512_BLOCK_LENGTH];
} SHA512_CTX;
#endif /* SHA2_USE_INTTYPES_H */
typedef SHA512_CTX SHA384_CTX;
/*** SHA-256/384/512 Function Prototypes ******************************/
#ifndef NOPROTO
#ifdef SHA2_USE_INTTYPES_H
void SHA256_Init(SHA256_CTX *);
void SHA256_Update(SHA256_CTX*, const uint8_t*, size_t);
void SHA256_Final(uint8_t[SHA256_DIGEST_LENGTH], SHA256_CTX*);
char* SHA256_End(SHA256_CTX*, char[SHA256_DIGEST_STRING_LENGTH]);
char* SHA256_Data(const uint8_t*, size_t, char[SHA256_DIGEST_STRING_LENGTH]);
void SHA384_Init(SHA384_CTX*);
void SHA384_Update(SHA384_CTX*, const uint8_t*, size_t);
void SHA384_Final(uint8_t[SHA384_DIGEST_LENGTH], SHA384_CTX*);
char* SHA384_End(SHA384_CTX*, char[SHA384_DIGEST_STRING_LENGTH]);
char* SHA384_Data(const uint8_t*, size_t, char[SHA384_DIGEST_STRING_LENGTH]);
void SHA512_Init(SHA512_CTX*);
void SHA512_Update(SHA512_CTX*, const uint8_t*, size_t);
void SHA512_Final(uint8_t[SHA512_DIGEST_LENGTH], SHA512_CTX*);
char* SHA512_End(SHA512_CTX*, char[SHA512_DIGEST_STRING_LENGTH]);
char* SHA512_Data(const uint8_t*, size_t, char[SHA512_DIGEST_STRING_LENGTH]);
#else /* SHA2_USE_INTTYPES_H */
void SHA256_Init(SHA256_CTX *);
void SHA256_Update(SHA256_CTX*, const u_int8_t*, size_t);
void SHA256_Final(u_int8_t[SHA256_DIGEST_LENGTH], SHA256_CTX*);
char* SHA256_End(SHA256_CTX*, char[SHA256_DIGEST_STRING_LENGTH]);
char* SHA256_Data(const u_int8_t*, size_t, char[SHA256_DIGEST_STRING_LENGTH]);
void SHA384_Init(SHA384_CTX*);
void SHA384_Update(SHA384_CTX*, const u_int8_t*, size_t);
void SHA384_Final(u_int8_t[SHA384_DIGEST_LENGTH], SHA384_CTX*);
char* SHA384_End(SHA384_CTX*, char[SHA384_DIGEST_STRING_LENGTH]);
char* SHA384_Data(const u_int8_t*, size_t, char[SHA384_DIGEST_STRING_LENGTH]);
void SHA512_Init(SHA512_CTX*);
void SHA512_Update(SHA512_CTX*, const u_int8_t*, size_t);
void SHA512_Final(u_int8_t[SHA512_DIGEST_LENGTH], SHA512_CTX*);
char* SHA512_End(SHA512_CTX*, char[SHA512_DIGEST_STRING_LENGTH]);
char* SHA512_Data(const u_int8_t*, size_t, char[SHA512_DIGEST_STRING_LENGTH]);
#endif /* SHA2_USE_INTTYPES_H */
#else /* NOPROTO */
void SHA256_Init();
void SHA256_Update();
void SHA256_Final();
char* SHA256_End();
char* SHA256_Data();
void SHA384_Init();
void SHA384_Update();
void SHA384_Final();
char* SHA384_End();
char* SHA384_Data();
void SHA512_Init();
void SHA512_Update();
void SHA512_Final();
char* SHA512_End();
char* SHA512_Data();
#endif /* NOPROTO */
#ifdef __cplusplus
}
#endif /* __cplusplus */
#endif /* __SHA2_H__ */
1.1 apr/random/unix/sha2_glue.c
Index: sha2_glue.c
===================================================================
#include <apr.h>
#include <apr_random.h>
#include <apr_pools.h>
#include "sha2.h"
static void sha256_init(apr_crypto_hash_t *h)
{
SHA256_Init(h->data);
}
static void sha256_add(apr_crypto_hash_t *h,const void *data,
apr_size_t bytes)
{
SHA256_Update(h->data,data,bytes);
}
static void sha256_finish(apr_crypto_hash_t *h,unsigned char *result)
{
SHA256_Final(result,h->data);
}
apr_crypto_hash_t *apr_crypto_sha256_new(apr_pool_t *p)
{
apr_crypto_hash_t *h=apr_palloc(p,sizeof *h);
h->data=apr_palloc(p,sizeof(SHA256_CTX));
h->init=sha256_init;
h->add=sha256_add;
h->finish=sha256_finish;
h->size=256/8;
return h;
}
1.142 +1 -1 apr/test/Makefile.in
Index: Makefile.in
===================================================================
RCS file: /home/cvs/apr/test/Makefile.in,v
retrieving revision 1.141
retrieving revision 1.142
diff -u -r1.141 -r1.142
--- Makefile.in 11 Aug 2003 18:19:38 -0000 1.141
+++ Makefile.in 3 Nov 2003 13:25:01 -0000 1.142
@@ -115,7 +115,7 @@
testdso.lo testoc.lo testdup.lo testsockets.lo testproc.lo \
testpoll.lo testlock.lo testsockopt.lo testpipe.lo testthread.lo \
testhash.lo testargs.lo testnames.lo testuser.lo testpath.lo \
- testenv.lo testprocmutex.lo
+ testenv.lo testprocmutex.lo testrand2.lo
testall: $(TESTS) mod_test.la libmod_test.la [EMAIL PROTECTED]@ \
[EMAIL PROTECTED]@ CuTest.lo [EMAIL PROTECTED]@ $(LOCAL_LIBS)
1.43 +1 -0 apr/test/test_apr.h
Index: test_apr.h
===================================================================
RCS file: /home/cvs/apr/test/test_apr.h,v
retrieving revision 1.42
retrieving revision 1.43
diff -u -r1.42 -r1.43
--- test_apr.h 2 Jul 2003 12:12:28 -0000 1.42
+++ test_apr.h 3 Nov 2003 13:25:01 -0000 1.43
@@ -81,6 +81,7 @@
CuSuite *testdir(void);
CuSuite *testfileinfo(void);
CuSuite *testrand(void);
+CuSuite *testrand2(void);
CuSuite *testdso(void);
CuSuite *testoc(void);
CuSuite *testdup(void);
1.45 +1 -0 apr/test/testall.c
Index: testall.c
===================================================================
RCS file: /home/cvs/apr/test/testall.c,v
retrieving revision 1.44
retrieving revision 1.45
diff -u -r1.44 -r1.45
--- testall.c 2 Jul 2003 12:12:30 -0000 1.44
+++ testall.c 3 Nov 2003 13:25:01 -0000 1.45
@@ -95,6 +95,7 @@
{"testdup", testdup},
{"testdir", testdir},
{"testrand", testrand},
+ {"testrand2", testrand2},
{"testdso", testdso},
{"testoc", testoc},
{"testsockets", testsockets},
1.1 apr/test/testrand2.c
Index: testrand2.c
===================================================================
/* ====================================================================
* The Apache Software License, Version 1.1
*
* Copyright (c) 2000-2003 The Apache Software Foundation. All rights
* reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. The end-user documentation included with the redistribution,
* if any, must include the following acknowledgment:
* "This product includes software developed by the
* Apache Software Foundation (http://www.apache.org/)."
* Alternately, this acknowledgment may appear in the software itself,
* if and wherever such third-party acknowledgments normally appear.
*
* 4. The names "Apache" and "Apache Software Foundation" must
* not be used to endorse or promote products derived from this
* software without prior written permission. For written
* permission, please contact [EMAIL PROTECTED]
*
* 5. Products derived from this software may not be called "Apache",
* nor may "Apache" appear in their name, without prior written
* permission of the Apache Software Foundation.
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
* ====================================================================
*
* This software consists of voluntary contributions made by many
* individuals on behalf of the Apache Software Foundation. For more
* information on the Apache Software Foundation, please see
* <http://www.apache.org/>.
*/
#include "apr_general.h"
#include "apr_random.h"
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include "test_apr.h"
static void hexdump(const unsigned char *b,int n)
{
int i;
for(i=0 ; i < n ; ++i)
{
#if 0
if((i&0xf) == 0)
printf("%04x",i);
printf(" %02x",b[i]);
if((i&0xf) == 0xf)
printf("\n");
#else
printf("0x%02x,",b[i]);
if((i&7) == 7)
printf("\n");
#endif
}
printf("\n");
}
static apr_random_t *r;
typedef apr_status_t rnd_fn(apr_random_t *r,void *b,apr_size_t n);
static void rand_run_kat(CuTest *tc,rnd_fn *f,apr_random_t *r,
const unsigned char expected[128])
{
unsigned char c[128];
apr_status_t rv;
rv=f(r,c,128);
CuAssertIntEquals(tc,0,rv);
if(rv)
return;
if(memcmp(c,expected,128))
{
hexdump(c,128);
hexdump(expected,128);
CuFail(tc,"Randomness mismatch");
}
}
static void rand_add_zeroes(apr_random_t *r)
{
static unsigned char c[2048];
apr_random_add_entropy(r,c,sizeof c);
}
static void rand_run_seed_short(CuTest *tc,rnd_fn *f,apr_random_t *r,
int count)
{
int i;
apr_status_t rv;
char c[1];
for(i=0 ; i < count ; ++i)
rand_add_zeroes(r);
rv=f(r,c,1);
CuAssertIntEquals(tc,rv,APR_ENOTENOUGHENTROPY);
}
static void rand_seed_short(CuTest *tc)
{
r=apr_random_standard_new(p);
rand_run_seed_short(tc,apr_random_insecure_bytes,r,32);
}
static void rand_kat(CuTest *tc)
{
unsigned char expected[128]=
{ 0x82,0x04,0xad,0xd2,0x0b,0xd5,0xac,0xda,
0x3d,0x85,0x58,0x38,0x54,0x6b,0x69,0x45,
0x37,0x4c,0xc7,0xd7,0x87,0xeb,0xbf,0xd9,
0xb1,0xb8,0xb8,0x2d,0x9b,0x33,0x6e,0x97,
0x04,0x1d,0x4c,0xb0,0xd1,0xdf,0x3d,0xac,
0xd2,0xaa,0xfa,0xcd,0x96,0xb7,0xcf,0xb1,
0x8e,0x3d,0xb3,0xe5,0x37,0xa9,0x95,0xb4,
0xaa,0x3d,0x11,0x1a,0x08,0x20,0x21,0x9f,
0xdb,0x08,0x3a,0xb9,0x57,0x9f,0xf2,0x1f,
0x27,0xdc,0xb6,0xc0,0x85,0x08,0x05,0xbb,
0x13,0xbe,0xb1,0xe9,0x63,0x2a,0xe2,0xa4,
0x23,0x15,0x2a,0x10,0xbf,0xdf,0x09,0xb3,
0xc7,0xfb,0x2d,0x87,0x48,0x19,0xfb,0xc0,
0x15,0x8c,0xcb,0xc6,0xbd,0x89,0x38,0x69,
0xa3,0xae,0xa3,0x21,0x58,0x50,0xe7,0xc4,
0x87,0xec,0x2e,0xb1,0x2d,0x6a,0xbd,0x46 };
rand_add_zeroes(r);
rand_run_kat(tc,apr_random_insecure_bytes,r,expected);
}
static void rand_seed_short2(CuTest *tc)
{
rand_run_seed_short(tc,apr_random_secure_bytes,r,320);
}
static void rand_kat2(CuTest *tc)
{
unsigned char expected[128]=
{ 0x38,0x8f,0x01,0x29,0x5a,0x5c,0x1f,0xa8,
0x00,0xde,0x16,0x4c,0xe5,0xf7,0x1f,0x58,
0xc0,0x67,0xe2,0x98,0x3d,0xde,0x4a,0x75,
0x61,0x3f,0x23,0xd8,0x45,0x7a,0x10,0x60,
0x59,0x9b,0xd6,0xaf,0xcb,0x0a,0x2e,0x34,
0x9c,0x39,0x5b,0xd0,0xbc,0x9a,0xf0,0x7b,
0x7f,0x40,0x8b,0x33,0xc0,0x0e,0x2a,0x56,
0xfc,0xe5,0xab,0xde,0x7b,0x13,0xf5,0xec,
0x15,0x68,0xb8,0x09,0xbc,0x2c,0x15,0xf0,
0x7b,0xef,0x2a,0x97,0x19,0xa8,0x69,0x51,
0xdf,0xb0,0x5f,0x1a,0x4e,0xdf,0x42,0x02,
0x71,0x36,0xa7,0x25,0x64,0x85,0xe2,0x72,
0xc7,0x87,0x4d,0x7d,0x15,0xbb,0x15,0xd1,
0xb1,0x62,0x0b,0x25,0xd9,0xd3,0xd9,0x5a,
0xe3,0x47,0x1e,0xae,0x67,0xb4,0x19,0x9e,
0xed,0xd2,0xde,0xce,0x18,0x70,0x57,0x12 };
rand_add_zeroes(r);
rand_run_kat(tc,apr_random_secure_bytes,r,expected);
}
static void rand_barrier(CuTest *tc)
{
apr_random_barrier(r);
rand_run_seed_short(tc,apr_random_secure_bytes,r,320);
}
static void rand_kat3(CuTest *tc)
{
unsigned char expected[128]=
{ 0xe8,0xe7,0xc9,0x45,0xe2,0x2a,0x54,0xb2,
0xdd,0xe0,0xf9,0xbc,0x3d,0xf9,0xce,0x3c,
0x4c,0xbd,0xc9,0xe2,0x20,0x4a,0x35,0x1c,
0x04,0x52,0x7f,0xb8,0x0f,0x60,0x89,0x63,
0x8a,0xbe,0x0a,0x44,0xac,0x5d,0xd8,0xeb,
0x24,0x7d,0xd1,0xda,0x4d,0x86,0x9b,0x94,
0x26,0x56,0x4a,0x5e,0x30,0xea,0xd4,0xa9,
0x9a,0xdf,0xdd,0xb6,0xb1,0x15,0xe0,0xfa,
0x28,0xa4,0xd6,0x95,0xa4,0xf1,0xd8,0x6e,
0xeb,0x8c,0xa4,0xac,0x34,0xfe,0x06,0x92,
0xc5,0x09,0x99,0x86,0xdc,0x5a,0x3c,0x92,
0xc8,0x3e,0x52,0x00,0x4d,0x01,0x43,0x6f,
0x69,0xcf,0xe2,0x60,0x9c,0x23,0xb3,0xa5,
0x5f,0x51,0x47,0x8c,0x07,0xde,0x60,0xc6,
0x04,0xbf,0x32,0xd6,0xdc,0xb7,0x31,0x01,
0x29,0x51,0x51,0xb3,0x19,0x6e,0xe4,0xf8 };
rand_run_kat(tc,apr_random_insecure_bytes,r,expected);
}
static void rand_kat4(CuTest *tc)
{
unsigned char expected[128]=
{ 0x7d,0x0e,0xc4,0x4e,0x3e,0xac,0x86,0x50,
0x37,0x95,0x7a,0x98,0x23,0x26,0xa7,0xbf,
0x60,0xfb,0xa3,0x70,0x90,0xc3,0x58,0xc6,
0xbd,0xd9,0x5e,0xa6,0x77,0x62,0x7a,0x5c,
0x96,0x83,0x7f,0x80,0x3d,0xf4,0x9c,0xcc,
0x9b,0x0c,0x8c,0xe1,0x72,0xa8,0xfb,0xc9,
0xc5,0x43,0x91,0xdc,0x9d,0x92,0xc2,0xce,
0x1c,0x5e,0x36,0xc7,0x87,0xb1,0xb4,0xa3,
0xc8,0x69,0x76,0xfc,0x35,0x75,0xcb,0x08,
0x2f,0xe3,0x98,0x76,0x37,0x80,0x04,0x5c,
0xb8,0xb0,0x7f,0xb2,0xda,0xe3,0xa3,0xba,
0xed,0xff,0xf5,0x9d,0x3b,0x7b,0xf3,0x32,
0x6c,0x50,0xa5,0x3e,0xcc,0xe1,0x84,0x9c,
0x17,0x9e,0x80,0x64,0x09,0xbb,0x62,0xf1,
0x95,0xf5,0x2c,0xc6,0x9f,0x6a,0xee,0x6d,
0x17,0x35,0x5f,0x35,0x8d,0x55,0x0c,0x07 };
rand_add_zeroes(r);
rand_run_kat(tc,apr_random_secure_bytes,r,expected);
}
CuSuite *testrand2(void)
{
CuSuite *suite = CuSuiteNew("Random2");
SUITE_ADD_TEST(suite, rand_seed_short);
SUITE_ADD_TEST(suite, rand_kat);
SUITE_ADD_TEST(suite, rand_seed_short2);
SUITE_ADD_TEST(suite, rand_kat2);
SUITE_ADD_TEST(suite, rand_barrier);
SUITE_ADD_TEST(suite, rand_kat3);
SUITE_ADD_TEST(suite, rand_kat4);
return suite;
}