http://www.sciencenews.org/20000617/bob2.asp

Week of June 17, 2000; Vol. 157, No. 25
 
The Power of Partitions
Writing a whole number as the sum of smaller numbers springs a mathematical surprise
By I. Peterson

 
Just a year before his death in 1920 at the age of 32, mathematician Srinivasa 
Ramanujan came upon a remarkable pattern in a special list of whole numbers.

The list represented counts of how many ways a given whole number can be expressed as 
a sum of positive integers. For example, 4 can be written as 3 + 1, 2 + 2, 2 + 1 + 1, 
and 1 + 1 + 1 + 1. Including 4 itself but excluding different arrangements of the same 
integers (2 + 1 + 1 is considered the same as 1 + 2 + 1), there are five distinct 
possibilities, or so-called partitions, of the number 4. Similarly, the integer 5 has 
seven partitions.

The list that Ramanujan perused gave for each of the first 200 integers, the number of 
their partitions, which range from 1 to 3,972,999,029,388.

Ramanujan noticed that, starting with 4, the number of partitions for every fifth 
integer is a multiple of 5. For instance, the number of partitions for 9 is 30 and for 
14 is 135.

He discovered several more such patterns. Starting with 5, the number of partitions 
for every seventh integer is a multiple of 7, and starting with 6, the number of 
partitions for every 11th integer is a multiple of 11. Moreover, similar relationships 
occur where the interval between the chosen integers is a power of 5, 7, or 11 or a 
product of these powers. Ramanujan went on to prove rigorously that these patterns 
hold not only for the 200 partition numbers in his table but also for all higher 
numbers.

It was a curious discovery. Nothing in the definition of partitions hinted that such 
relationships, called congruences, should exist or that the prime numbers 5, 7, and 11 
should play a special role.

After many decades of nearly fruitless searching that yielded just one or two 
apparently isolated examples of large numbers that fit the pattern, mathematicians 
came to believe that no other congruences exist. Those found by Ramanujan and the 
later mathematicians were thought to be little more than numerical flukes.

Indeed, "it was really believed that there would probably never be any new major 
discoveries regarding partition congruences," says George E. Andrews of Pennsylvania 
State University in State College.

In a startling turnabout, mathematician Ken Ono has now proved that infinitely many 
such relationships occur. "This was really quite unexpected," says number theorist 
Ono, who holds positions at both Penn State and the University of Wisconsin-Madison. 
He described his results in the January Annals of Mathematics.

"Ono's work is really spectacular," comments Bruce C. Berndt of the University of 
Illinois at Urbana-Champaign. "This certainly must rank as the most important work on 
partition congruences since the epic work of Ramanujan."

"It's an extraordinary discovery," agrees Andrew M. Granville of the University of 
Georgia in Athens.

Moreover, Ono's partition research has intriguing, unexpected links to complex 
mathematical ideas and methods that earlier led to proofs of Fermat's last theorem 
(SN: 11/5/94, p. 295) and the Taniyama-Shimura conjecture (SN: 10/2/99, p. 221). It 
has opened up new avenues for studying some of the most important, but difficult, 
questions in number theory, Granville says.

Born into poverty, Ramanujan grew up in southern India, and although he had little 
formal training in mathematics, he became hooked on mathematics. He spent the years 
between 1903 and 1913 cramming notebooks with page after page of mathematical formulas 
and relationships that he had uncovered (SN: 4/25/87, p. 266).

Ramanujan's life as a professional mathematician began in 1914 when he accepted an 
invitation from the prominent British mathematician G.H. Hardy to come to Cambridge 
University. He spent 5 years in England, publishing many papers and achieving 
international recognition for his mathematical research.

Though his work was cut short by a mysterious illness that brought him back to India 
for the final year of his life, Ramanujan's work has remained a subject of 
considerable interest. For the past 2 decades, Berndt has been going through 
Ramanujan's scribbled notes, systematically deciphering, writing out, and proving each 
of the numerous theorems Ramanujan had formulated.

Two years ago, Berndt was examining an unpublished, handwritten Ramanujan manuscript 
on partitions. "It contained claims that had never been proved," Berndt remarks. So he 
recruited Ono, an expert on partitions from a modern perspective, to help him fill in 
the details and provide the necessary proofs.

"I had never read any of Ramanujan's notebooks, though I was familiar with a lot of 
what he had done through the writings of more modern mathematicians," Ono says. "I 
didn't suspect that I would learn anything from studying Ramanujan's notes."

In fact, the manuscript didn't contain anything startling or new. However, Ramanujan 
had written out one mathematical expression, or identity, in a manner that to Ono 
seemed particularly awkward.

"The first time I saw it, I wrote to Berndt saying this can't be right," Ono recalls. 
Nonetheless, after Ono translated the expression into modern mathematical language, it 
made perfect sense.

Yet the apparent awkwardness of Ramanujan's original formulation bothered Ono. It got 
him to think deeply about the many different ways in which mathematicians can express 
identities. In the course of that rethinking, he obtained crucial insights that led 
him to tackle the question of partition congruencessomething that he would not 
otherwise have attempted.

"I learned a valuable lesson," Ono remarks. "It sometimes really pays to read the 
original."

In a remarkable tour de force, Ono proved that partition congruences can be found not 
only for the prime numbers 5, 7, and 11 but also for all larger primes. To do so, he 
had to exploit a previously unsuspected link between partition numbers and complex 
mathematical objects called modular forms.

"Modular forms lie at the heart of modern number theory," says Scott Ahlgren of 
Colgate University in Hamilton, N.Y.

They are special types of mathematical relationships that involve so-called complex 
numbers, which have a real and an imaginary component. In effect, the relationships 
represent particular types of repeating patterns, roughly analogous to the way a 
trigonometric function such as sine represents a repeating pattern for ordinary 
numbers.

Mathematicians have identified many different types of modular forms. The connection 
between certain modular forms and elliptic curves helped Andrew Wiles of Princeton 
University prove Fermat's last theorem in 1993.

Applying modular-form theory, as developed by other mathematicians, Ono uncovered a 
connection between partition numbers and specific modular forms. He used that 
relationship to establish, in effect, the existence of congruences involving 
prime-number divisors among the partition numbers.

Unlike many previous advances in partition theory, Ono's research involved no 
computation and relied heavily on theory. "What I find particularly appealing about 
this approach is that it uses the most powerful tools in modern number theory to 
attack a classical problem," Ahlgren says.

Interestingly, although Ono proved the existence of these congruences, he provided 
only one explicit example. In this new congruence, the starting number is 111,247, 
with each successive step to the next integer going up by 594 x 13. The corresponding 
partitions are then multiples of the prime number 13.

Ono, however, didn't have an effective recipe, or algorithm, for generating examples. 
But Rhiannon L. Weaver, an undergraduate at Penn State, found a simple criterion for 
identifying the start of a progression. She then developed an algorithm, working with 
primes from 13 to 31, to obtain more than 70,000 new congruences.

"This wasn't a trivial exercise," Ono says. "It was a great piece of work." Applying 
Weaver's method, a researcher can now readily write a computer program to find 
thousands of additional examples, he explains.

The newfound congruences also show why mathematicians had failed to come up with many 
additional examples by trial and error. "The numbers involved are very big," Granville 
remarks. Moreover, "even now that we know where to look, I don't think we would have 
spotted them from raw computation."

In another recent development, Ahlgren has extended Ono's results to establish the 
existence of congruences that work with multiples of composite numbers, which consist 
of primes multiplied together, as long as the numbers aren't divisible by 2 or 3.

Ahlgren reported his results in May at the Millennial Conference on Number Theory held 
at Illinois.

"It is now apparent that Ramanujan-type congruences are plentiful," Ono says. 
"However, it is typical that such congruences are monstrous."

Ono's results have already sparked a considerable amount of research activity. "It's 
amazing how much more we know now than we did just last year," Ahlgren says.

Despite these advances, however, mathematicians still don't know whether there are 
congruences that involve multiples of 2 or 3. Ono's methods don't work for these 
particular cases, and researchers must develop new tools to hunt for such 
relationships.

At the same time, Ono has given partition numbers an exciting, new role in 
mathematics. "Partitions are much more than just counts of how to add up numbers," Ono 
says. "They are a vehicle for testing some of the most important conjectures about 
[mathematical] objects that we can barely get a handle on otherwise."

Indeed, studying partitions could lead to new insights into the theory of modular 
forms and illuminate its connections with important, unsolved questions in number 
theory, such as the so-called Swinnerton-Dyer conjecture. The Clay Mathematics 
Institute in Cambridge, Mass., recently listed this problem as one of the top seven 
questions in mathematics and offered a $1 million prize for its solution. The 
conjecture concerns a criterion for deciding whether certain equations have 
whole-number solutions.

The study of partitions has long been one of the mainstays of number theory and rivals 
the study of primes for intrinsic mathematical appeal, Andrews says.

"Primes form the basis for multiplication, and the study of partitions is grounded in 
the addition of integers," he notes. "What is intriguing is the fact that such an 
elementary idea can have theorems as subtle as those of Ono."


>From Science News, Vol. 157, No. 25, June 17, 2000, p. 396



------------------------------------------------
krys, you live on in our memories
your life's promise merged with our own dreams 
but when we heard you died we cried
no one could answer the question, "why?"
                       -- jeradonah, Oct 30 '99 




HotBot - Search smarter.
http://www.hotbot.com

Reply via email to