Neal Becker wrote:
I need to write functions that apply element-wise numpy arrays, and should be independent of the number of dimensions.

numpy has a mechanism for generic (dimension-independent) iteration over elements of the array, but is there any way to use this (or implement something similar) in cython?


There's two methods: ufuncs and multi-iterators. ufuncs is the most common one -- search for ufunc on the Cython wiki, there should be an example somewhere.

I just did this using multi-iterators (which I had to do because I needed some context -- a temporary buffer -- during the calculation). Attaching my code for calculating a Wigner 3j symbol elementwise with full broadcasting.

(It is not as fast as it could be -- it is possible to extract out the inner loop and have it as a C loop rather than rely on the iterator, which is faster. I didn't bother yet though, mainly because each Wigner symbol calculation is rather heavy.)

The NumPy docs is rather good in this area, check there next! (search for the multiiterator functions I use + ufuncs)

Also you need a newer numpy.pxd than the one shipped with Cython for both ufuncs and multiiterators. Just replace the one in Cython/Includes with the attachment. I will include it in the next Cython release.

--
Dag Sverre
# NumPy static imports for Cython
#
# If any of the PyArray_* functions are called, import_array must be
# called first.
#
# This also defines backwards-compatability buffer acquisition
# code for use in Python 2.x (or Python <= 2.5 when NumPy starts
# implementing PEP-3118 directly).
#
# Because of laziness, the format string of the buffer is statically
# allocated. Increase the size if this is not enough, or submit a
# patch to do this properly.
#
# Author: Dag Sverre Seljebotn
#

DEF _buffer_format_string_len = 255

cimport python_buffer as pybuf
from python_object cimport PyObject
cimport stdlib
cimport stdio

cdef extern from "Python.h":
    ctypedef int Py_intptr_t

cdef extern from "numpy/arrayobject.h":
    ctypedef Py_intptr_t npy_intp

    cdef enum NPY_TYPES:
        NPY_BOOL
        NPY_BYTE
        NPY_UBYTE
        NPY_SHORT
        NPY_USHORT 
        NPY_INT
        NPY_UINT 
        NPY_LONG
        NPY_ULONG
        NPY_LONGLONG
        NPY_ULONGLONG
        NPY_FLOAT
        NPY_DOUBLE 
        NPY_LONGDOUBLE
        NPY_CFLOAT
        NPY_CDOUBLE
        NPY_CLONGDOUBLE
        NPY_OBJECT
        NPY_STRING
        NPY_UNICODE
        NPY_VOID
        NPY_NTYPES
        NPY_NOTYPE

    enum NPY_ORDER:
        NPY_ANYORDER
        NPY_CORDER
        NPY_FORTRANORDER

    enum NPY_CLIPMODE:
        NPY_CLIP
        NPY_WRAP
        NPY_RAISE

    enum NPY_SCALARKIND:
        NPY_NOSCALAR,
        NPY_BOOL_SCALAR,
        NPY_INTPOS_SCALAR,
        NPY_INTNEG_SCALAR,
        NPY_FLOAT_SCALAR,
        NPY_COMPLEX_SCALAR,
        NPY_OBJECT_SCALAR


    enum NPY_SORTKIND:
        NPY_QUICKSORT
        NPY_HEAPSORT
        NPY_MERGESORT

    cdef enum requirements:
        NPY_C_CONTIGUOUS
        NPY_F_CONTIGUOUS
        NPY_CONTIGUOUS
        NPY_FORTRAN
        NPY_OWNDATA
        NPY_FORCECAST
        NPY_ENSURECOPY
        NPY_ENSUREARRAY
        NPY_ELEMENTSTRIDES
        NPY_ALIGNED
        NPY_NOTSWAPPED
        NPY_WRITEABLE
        NPY_UPDATEIFCOPY
        NPY_ARR_HAS_DESCR

        NPY_BEHAVED
        NPY_BEHAVED_NS
        NPY_CARRAY
        NPY_CARRAY_RO
        NPY_FARRAY
        NPY_FARRAY_RO
        NPY_DEFAULT

        NPY_IN_ARRAY
        NPY_OUT_ARRAY
        NPY_INOUT_ARRAY
        NPY_IN_FARRAY
        NPY_OUT_FARRAY
        NPY_INOUT_FARRAY

        NPY_UPDATE_ALL
        
    cdef enum:
        NPY_MAXDIMS

    npy_intp NPY_MAX_ELSIZE

    ctypedef void (*PyArray_VectorUnaryFunc)(void *, void *, npy_intp, void *,  
void *)
    
    ctypedef class numpy.dtype [object PyArray_Descr]:
        # Use PyDataType_* macros when possible, however there are no macros
        # for accessing some of the fields, so some are defined. Please
        # ask on cython-dev if you need more.
        cdef int type_num
        cdef int itemsize "elsize"
        cdef char byteorder
        cdef object fields
        cdef tuple names

    ctypedef extern class numpy.flatiter [object PyArrayIterObject]:
        # Use through macros
        pass

    ctypedef extern class numpy.broadcast [object PyArrayMultiIterObject]:
        # Use through macros
        pass

    ctypedef struct PyArrayObject:
        # For use in situations where ndarray can't replace PyArrayObject*,
        # like PyArrayObject**.
        pass
    
    ctypedef class numpy.ndarray [object PyArrayObject]:
        cdef __cythonbufferdefaults__ = {"mode": "strided"}
        
        cdef:
            # Only taking a few of the most commonly used and stable fields.
            # One should use PyArray_* macros instead to access the C fields.
            char *data
            int ndim "nd"
            npy_intp *shape "dimensions" 
            npy_intp *strides
            dtype descr

        # Note: This syntax (function definition in pxd files) is an
        # experimental exception made for __getbuffer__ and __releasebuffer__
        # -- the details of this may change.
        def __getbuffer__(ndarray self, Py_buffer* info, int flags):
            # This implementation of getbuffer is geared towards Cython
            # requirements, and does not yet fullfill the PEP.
            # In particular strided access is always provided regardless
            # of flags
            cdef int copy_shape, i, ndim
            cdef int endian_detector = 1
            cdef bint little_endian = ((<char*>&endian_detector)[0] != 0)
            
            ndim = PyArray_NDIM(self)
            
            if sizeof(npy_intp) != sizeof(Py_ssize_t):
                copy_shape = 1
            else:
                copy_shape = 0

            if ((flags & pybuf.PyBUF_C_CONTIGUOUS == pybuf.PyBUF_C_CONTIGUOUS)
                and not PyArray_CHKFLAGS(self, NPY_C_CONTIGUOUS)):
                raise ValueError(u"ndarray is not C contiguous")
                
            if ((flags & pybuf.PyBUF_F_CONTIGUOUS == pybuf.PyBUF_F_CONTIGUOUS)
                and not PyArray_CHKFLAGS(self, NPY_F_CONTIGUOUS)):
                raise ValueError(u"ndarray is not Fortran contiguous")

            info.buf = PyArray_DATA(self)
            info.ndim = ndim
            if copy_shape:
                # Allocate new buffer for strides and shape info. This is 
allocated
                # as one block, strides first.
                info.strides = <Py_ssize_t*>stdlib.malloc(sizeof(Py_ssize_t) * 
ndim * 2)
                info.shape = info.strides + ndim
                for i in range(ndim):
                    info.strides[i] = PyArray_STRIDES(self)[i]
                    info.shape[i] = PyArray_DIMS(self)[i]
            else:
                info.strides = <Py_ssize_t*>PyArray_STRIDES(self)
                info.shape = <Py_ssize_t*>PyArray_DIMS(self)
            info.suboffsets = NULL
            info.itemsize = PyArray_ITEMSIZE(self)
            info.readonly = not PyArray_ISWRITEABLE(self)

            cdef int t
            cdef char* f = NULL
            cdef dtype descr = self.descr
            cdef list stack
            cdef int offset

            cdef bint hasfields = PyDataType_HASFIELDS(descr)

            if not hasfields and not copy_shape:
                # do not call releasebuffer
                info.obj = None
            else:
                # need to call releasebuffer
                info.obj = self

            if not hasfields:
                t = descr.type_num
                if ((descr.byteorder == '>' and little_endian) or
                    (descr.byteorder == '<' and not little_endian)):
                    raise ValueError(u"Non-native byte order not supported")
                if   t == NPY_BYTE:        f = "b"
                elif t == NPY_UBYTE:       f = "B"
                elif t == NPY_SHORT:       f = "h"
                elif t == NPY_USHORT:      f = "H"
                elif t == NPY_INT:         f = "i"
                elif t == NPY_UINT:        f = "I"
                elif t == NPY_LONG:        f = "l"
                elif t == NPY_ULONG:       f = "L"
                elif t == NPY_LONGLONG:    f = "q"
                elif t == NPY_ULONGLONG:   f = "Q"
                elif t == NPY_FLOAT:       f = "f"
                elif t == NPY_DOUBLE:      f = "d"
                elif t == NPY_LONGDOUBLE:  f = "g"
                elif t == NPY_CFLOAT:      f = "Zf"
                elif t == NPY_CDOUBLE:     f = "Zd"
                elif t == NPY_CLONGDOUBLE: f = "Zg"
                elif t == NPY_OBJECT:      f = "O"
                else:
                    raise ValueError(u"unknown dtype code in numpy.pxd (%d)" % 
t)
                info.format = f
                return
            else:
                info.format = <char*>stdlib.malloc(_buffer_format_string_len)
                info.format[0] = '^' # Native data types, manual alignment
                offset = 0
                f = _util_dtypestring(descr, info.format + 1,
                                      info.format + _buffer_format_string_len,
                                      &offset)
                f[0] = 0 # Terminate format string

        def __releasebuffer__(ndarray self, Py_buffer* info):
            if PyArray_HASFIELDS(self):
                stdlib.free(info.format)
            if sizeof(npy_intp) != sizeof(Py_ssize_t):
                stdlib.free(info.strides)
                # info.shape was stored after info.strides in the same block


    ctypedef signed char      npy_bool

    ctypedef signed char      npy_byte
    ctypedef signed short     npy_short
    ctypedef signed int       npy_int
    ctypedef signed long      npy_long
    ctypedef signed long long npy_longlong

    ctypedef unsigned char      npy_ubyte
    ctypedef unsigned short     npy_ushort
    ctypedef unsigned int       npy_uint
    ctypedef unsigned long      npy_ulong
    ctypedef unsigned long long npy_ulonglong

    ctypedef float        npy_float
    ctypedef double       npy_double
    ctypedef long double  npy_longdouble

    ctypedef signed char        npy_int8
    ctypedef signed short       npy_int16
    ctypedef signed int         npy_int32
    ctypedef signed long long   npy_int64
    ctypedef signed long long   npy_int96
    ctypedef signed long long   npy_int128    

    ctypedef unsigned char      npy_uint8
    ctypedef unsigned short     npy_uint16
    ctypedef unsigned int       npy_uint32
    ctypedef unsigned long long npy_uint64
    ctypedef unsigned long long npy_uint96
    ctypedef unsigned long long npy_uint128

    ctypedef float        npy_float32
    ctypedef double       npy_float64
    ctypedef long double  npy_float80
    ctypedef long double  npy_float96
    ctypedef long double  npy_float128

    ctypedef float complex        npy_complex64
    ctypedef double complex       npy_complex128
    ctypedef long double complex  npy_complex120
    ctypedef long double complex  npy_complex192
    ctypedef long double complex  npy_complex256

    ctypedef struct npy_cfloat:
        double real
        double imag

    ctypedef struct npy_cdouble:
        double real
        double imag

    ctypedef struct npy_clongdouble:
        double real
        double imag

    ctypedef struct PyArray_Dims:
        npy_intp *ptr
        int len

    void import_array()

    #
    # Macros from ndarrayobject.h
    #
    bint PyArray_CHKFLAGS(ndarray m, int flags)
    bint PyArray_ISISCONTIGUOUS(ndarray m)
    bint PyArray_ISWRITEABLE(ndarray m)
    bint PyArray_ISALIGNED(ndarray m)

    int PyArray_NDIM(ndarray)
    bint PyArray_ISONESEGMENT(ndarray)
    bint PyArray_ISFORTRAN(ndarray)
    int PyArray_FORTRANIF(ndarray)

    void* PyArray_DATA(ndarray)
    char* PyArray_BYTES(ndarray)
    npy_intp* PyArray_DIMS(ndarray)
    npy_intp* PyArray_STRIDES(ndarray)
    npy_intp PyArray_DIM(ndarray, size_t)
    npy_intp PyArray_STRIDE(ndarray, size_t)

    # object PyArray_BASE(ndarray) wrong refcount semantics
    # dtype PyArray_DESCR(ndarray) wrong refcount semantics
    int PyArray_FLAGS(ndarray)
    npy_intp PyArray_ITEMSIZE(ndarray)
    int PyArray_TYPE(ndarray arr)

    object PyArray_GETITEM(ndarray arr, void *itemptr)
    int PyArray_SETITEM(ndarray arr, void *itemptr, object obj)
        
    bint PyTypeNum_ISBOOL(int)
    bint PyTypeNum_ISUNSIGNED(int)
    bint PyTypeNum_ISSIGNED(int)
    bint PyTypeNum_ISINTEGER(int)
    bint PyTypeNum_ISFLOAT(int)
    bint PyTypeNum_ISNUMBER(int)
    bint PyTypeNum_ISSTRING(int)
    bint PyTypeNum_ISCOMPLEX(int)
    bint PyTypeNum_ISPYTHON(int)
    bint PyTypeNum_ISFLEXIBLE(int)
    bint PyTypeNum_ISUSERDEF(int)
    bint PyTypeNum_ISEXTENDED(int)
    bint PyTypeNum_ISOBJECT(int)

    bint PyDataType_ISBOOL(dtype)
    bint PyDataType_ISUNSIGNED(dtype)
    bint PyDataType_ISSIGNED(dtype)
    bint PyDataType_ISINTEGER(dtype)
    bint PyDataType_ISFLOAT(dtype)
    bint PyDataType_ISNUMBER(dtype)
    bint PyDataType_ISSTRING(dtype)
    bint PyDataType_ISCOMPLEX(dtype)
    bint PyDataType_ISPYTHON(dtype)
    bint PyDataType_ISFLEXIBLE(dtype)
    bint PyDataType_ISUSERDEF(dtype)
    bint PyDataType_ISEXTENDED(dtype)
    bint PyDataType_ISOBJECT(dtype)
    bint PyDataType_HASFIELDS(dtype)

    bint PyArray_ISBOOL(ndarray)
    bint PyArray_ISUNSIGNED(ndarray)
    bint PyArray_ISSIGNED(ndarray)
    bint PyArray_ISINTEGER(ndarray)
    bint PyArray_ISFLOAT(ndarray)
    bint PyArray_ISNUMBER(ndarray)
    bint PyArray_ISSTRING(ndarray)
    bint PyArray_ISCOMPLEX(ndarray)
    bint PyArray_ISPYTHON(ndarray)
    bint PyArray_ISFLEXIBLE(ndarray)
    bint PyArray_ISUSERDEF(ndarray)
    bint PyArray_ISEXTENDED(ndarray)
    bint PyArray_ISOBJECT(ndarray)
    bint PyArray_HASFIELDS(ndarray)

    bint PyArray_ISVARIABLE(ndarray)

    bint PyArray_SAFEALIGNEDCOPY(ndarray)
    bint PyArray_ISNBO(ndarray)
    bint PyArray_IsNativeByteOrder(ndarray)
    bint PyArray_ISNOTSWAPPED(ndarray)
    bint PyArray_ISBYTESWAPPED(ndarray)

    bint PyArray_FLAGSWAP(ndarray, int)

    bint PyArray_ISCARRAY(ndarray)
    bint PyArray_ISCARRAY_RO(ndarray)
    bint PyArray_ISFARRAY(ndarray)
    bint PyArray_ISFARRAY_RO(ndarray)
    bint PyArray_ISBEHAVED(ndarray)
    bint PyArray_ISBEHAVED_RO(ndarray)


    bint PyDataType_ISNOTSWAPPED(dtype)
    bint PyDataType_ISBYTESWAPPED(dtype)

    bint PyArray_DescrCheck(object)

    bint PyArray_Check(object)
    bint PyArray_CheckExact(object)

    # Cannot be supported due to out arg:
    # bint PyArray_HasArrayInterfaceType(object, dtype, object, object&)
    # bint PyArray_HasArrayInterface(op, out)


    bint PyArray_IsZeroDim(object)
    # Cannot be supported due to ## ## in macro:
    # bint PyArray_IsScalar(object, verbatim work)
    bint PyArray_CheckScalar(object)
    bint PyArray_IsPythonNumber(object)
    bint PyArray_IsPythonScalar(object)
    bint PyArray_IsAnyScalar(object)
    bint PyArray_CheckAnyScalar(object)
    ndarray PyArray_GETCONTIGUOUS(ndarray)
    bint PyArray_SAMESHAPE(ndarray, ndarray)
    npy_intp PyArray_SIZE(ndarray)
    npy_intp PyArray_NBYTES(ndarray)
    
    object PyArray_FROM_O(object)
    object PyArray_FROM_OF(object m, int flags)
    bint PyArray_FROM_OT(object m, int type)
    bint PyArray_FROM_OTF(object m, int type, int flags)
    object PyArray_FROMANY(object m, int type, int min, int max, int flags)
    bint PyArray_ZEROS(ndarray m, dims, int type, int fortran)
    object PyArray_EMPTY(object m, dims, int type, int fortran)
    void PyArray_FILLWBYTE(object, int val)
    npy_intp PyArray_REFCOUNT(object)
    object PyArray_ContiguousFromAny(op, int, int min_depth, int max_depth)
    unsigned char PyArray_EquivArrTypes(ndarray a1, ndarray a2)
    bint PyArray_EquivByteorders(int b1, int b2)
    object PyArray_SimpleNew(int nd, npy_intp* dims, int typenum)
    object PyArray_SimpleNewFromData(int nd, npy_intp* dims, int typenum, void* 
data)
    #object PyArray_SimpleNewFromDescr(int nd, npy_intp* dims, dtype descr)
    object PyArray_ToScalar(void* data, ndarray arr)

    void* PyArray_GETPTR1(ndarray m, npy_intp i)
    void* PyArray_GETPTR2(ndarray m, npy_intp i, npy_intp j)
    void* PyArray_GETPTR3(ndarray m, npy_intp i, npy_intp j, npy_intp k)
    void* PyArray_GETPTR4(ndarray m, npy_intp i, npy_intp j, npy_intp k, 
npy_intp l)

    void PyArray_XDECREF_ERR(ndarray)
    # Cannot be supported due to out arg
    # void PyArray_DESCR_REPLACE(descr)


    object PyArray_Copy(ndarray)
    object PyArray_FromObject(object op, int type, int min_depth, int max_depth)
    object PyArray_ContiguousFromObject(object op, int type, int min_depth, int 
max_depth)
    object PyArray_CopyFromObject(object op, int type, int min_depth, int 
max_depth)

    object PyArray_Cast(ndarray mp, int type_num)
    object PyArray_Take(ndarray ap, object items, int axis)
    object PyArray_Put(ndarray ap, object items, object values)

    void PyArray_MultiIter_RESET(broadcast multi) nogil
    void PyArray_MultiIter_NEXT(broadcast multi) nogil
    void PyArray_MultiIter_GOTO(broadcast multi, npy_intp dest) nogil
    void PyArray_MultiIter_GOTO1D(broadcast multi, npy_intp ind) nogil
    void* PyArray_MultiIter_DATA(broadcast multi, npy_intp i) nogil
    void PyArray_MultiIter_NEXTi(broadcast multi, npy_intp i) nogil
    bint PyArray_MultiIter_NOTDONE(broadcast multi) nogil

    # Functions from __multiarray_api.h

    # Functions taking dtype and returning object/ndarray are disabled
    # for now as they steal dtype references. I'm conservative and disable
    # more than is probably needed until it can be checked further.
    int PyArray_SetNumericOps        (object)
    object PyArray_GetNumericOps ()
    int PyArray_INCREF (ndarray)
    int PyArray_XDECREF (ndarray)
    void PyArray_SetStringFunction (object, int)
    dtype PyArray_DescrFromType (int)
    object PyArray_TypeObjectFromType (int)
    char * PyArray_Zero (ndarray)
    char * PyArray_One (ndarray)
    #object PyArray_CastToType (ndarray, dtype, int)
    int PyArray_CastTo (ndarray, ndarray)
    int PyArray_CastAnyTo (ndarray, ndarray)
    int PyArray_CanCastSafely (int, int)
    npy_bool PyArray_CanCastTo (dtype, dtype)
    int PyArray_ObjectType (object, int)
    dtype PyArray_DescrFromObject (object, dtype)
    #ndarray* PyArray_ConvertToCommonType (object, int *)
    dtype PyArray_DescrFromScalar (object)
    dtype PyArray_DescrFromTypeObject (object)
    npy_intp PyArray_Size (object)
    #object PyArray_Scalar (void *, dtype, object)
    #object PyArray_FromScalar (object, dtype)
    void PyArray_ScalarAsCtype (object, void *)
    #int PyArray_CastScalarToCtype (object, void *, dtype)
    #int PyArray_CastScalarDirect (object, dtype, void *, int)
    object PyArray_ScalarFromObject (object)
    #PyArray_VectorUnaryFunc * PyArray_GetCastFunc (dtype, int)
    object PyArray_FromDims (int, int *, int)
    #object PyArray_FromDimsAndDataAndDescr (int, int *, dtype, char *)
    #object PyArray_FromAny (object, dtype, int, int, int, object)
    object PyArray_EnsureArray (object)
    object PyArray_EnsureAnyArray (object)
    #object PyArray_FromFile (stdio.FILE *, dtype, npy_intp, char *)
    #object PyArray_FromString (char *, npy_intp, dtype, npy_intp, char *)
    #object PyArray_FromBuffer (object, dtype, npy_intp, npy_intp)
    #object PyArray_FromIter (object, dtype, npy_intp)
    object PyArray_Return (ndarray)
    #object PyArray_GetField (ndarray, dtype, int)
    #int PyArray_SetField (ndarray, dtype, int, object)
    object PyArray_Byteswap (ndarray, npy_bool)
    object PyArray_Resize (ndarray, PyArray_Dims *, int, NPY_ORDER)
    int PyArray_MoveInto (ndarray, ndarray)
    int PyArray_CopyInto (ndarray, ndarray)
    int PyArray_CopyAnyInto (ndarray, ndarray)
    int PyArray_CopyObject (ndarray, object)
    object PyArray_NewCopy (ndarray, NPY_ORDER)
    object PyArray_ToList (ndarray)
    object PyArray_ToString (ndarray, NPY_ORDER)
    int PyArray_ToFile (ndarray, stdio.FILE *, char *, char *)
    int PyArray_Dump (object, object, int)
    object PyArray_Dumps (object, int)
    int PyArray_ValidType (int)
    void PyArray_UpdateFlags (ndarray, int)
    object PyArray_New (type, int, npy_intp *, int, npy_intp *, void *, int, 
int, object)
    #object PyArray_NewFromDescr (type, dtype, int, npy_intp *, npy_intp *, 
void *, int, object)
    #dtype PyArray_DescrNew (dtype)
    dtype PyArray_DescrNewFromType (int)
    double PyArray_GetPriority (object, double)
    object PyArray_IterNew (object)
    object PyArray_MultiIterNew (int, ...)

    int PyArray_PyIntAsInt (object)
    npy_intp PyArray_PyIntAsIntp (object)
    int PyArray_Broadcast (broadcast)
    void PyArray_FillObjectArray (ndarray, object)
    int PyArray_FillWithScalar (ndarray, object)
    npy_bool PyArray_CheckStrides (int, int, npy_intp, npy_intp, npy_intp *, 
npy_intp *)
    dtype PyArray_DescrNewByteorder (dtype, char)
    object PyArray_IterAllButAxis (object, int *)
    #object PyArray_CheckFromAny (object, dtype, int, int, int, object)
    #object PyArray_FromArray (ndarray, dtype, int)
    object PyArray_FromInterface (object)
    object PyArray_FromStructInterface (object)
    #object PyArray_FromArrayAttr (object, dtype, object)
    #NPY_SCALARKIND PyArray_ScalarKind (int, ndarray*)
    int PyArray_CanCoerceScalar (int, int, NPY_SCALARKIND)
    object PyArray_NewFlagsObject (object)
    npy_bool PyArray_CanCastScalar (type, type)
    #int PyArray_CompareUCS4 (npy_ucs4 *, npy_ucs4 *, register size_t)
    int PyArray_RemoveSmallest (broadcast)
    int PyArray_ElementStrides (object)
    void PyArray_Item_INCREF (char *, dtype)
    void PyArray_Item_XDECREF (char *, dtype)
    object PyArray_FieldNames (object)
    object PyArray_Transpose (ndarray, PyArray_Dims *)
    object PyArray_TakeFrom (ndarray, object, int, ndarray, NPY_CLIPMODE)
    object PyArray_PutTo (ndarray, object, object, NPY_CLIPMODE)
    object PyArray_PutMask (ndarray, object, object)
    object PyArray_Repeat (ndarray, object, int)
    object PyArray_Choose (ndarray, object, ndarray, NPY_CLIPMODE)
    int PyArray_Sort (ndarray, int, NPY_SORTKIND)
    object PyArray_ArgSort (ndarray, int, NPY_SORTKIND)
    object PyArray_SearchSorted (ndarray, object, NPY_SEARCHSIDE)
    object PyArray_ArgMax (ndarray, int, ndarray)
    object PyArray_ArgMin (ndarray, int, ndarray)
    object PyArray_Reshape (ndarray, object)
    object PyArray_Newshape (ndarray, PyArray_Dims *, NPY_ORDER)
    object PyArray_Squeeze (ndarray)
    #object PyArray_View (ndarray, dtype, type)
    object PyArray_SwapAxes (ndarray, int, int)
    object PyArray_Max (ndarray, int, ndarray)
    object PyArray_Min (ndarray, int, ndarray)
    object PyArray_Ptp (ndarray, int, ndarray)
    object PyArray_Mean (ndarray, int, int, ndarray)
    object PyArray_Trace (ndarray, int, int, int, int, ndarray)
    object PyArray_Diagonal (ndarray, int, int, int)
    object PyArray_Clip (ndarray, object, object, ndarray)
    object PyArray_Conjugate (ndarray, ndarray)
    object PyArray_Nonzero (ndarray)
    object PyArray_Std (ndarray, int, int, ndarray, int)
    object PyArray_Sum (ndarray, int, int, ndarray)
    object PyArray_CumSum (ndarray, int, int, ndarray)
    object PyArray_Prod (ndarray, int, int, ndarray)
    object PyArray_CumProd (ndarray, int, int, ndarray)
    object PyArray_All (ndarray, int, ndarray)
    object PyArray_Any (ndarray, int, ndarray)
    object PyArray_Compress (ndarray, object, int, ndarray)
    object PyArray_Flatten (ndarray, NPY_ORDER)
    object PyArray_Ravel (ndarray, NPY_ORDER)
    npy_intp PyArray_MultiplyList (npy_intp *, int)
    int PyArray_MultiplyIntList (int *, int)
    void * PyArray_GetPtr (ndarray, npy_intp*)
    int PyArray_CompareLists (npy_intp *, npy_intp *, int)
    #int PyArray_AsCArray (object*, void *, npy_intp *, int, dtype)
    #int PyArray_As1D (object*, char **, int *, int)
    #int PyArray_As2D (object*, char ***, int *, int *, int)
    int PyArray_Free (object, void *)
    #int PyArray_Converter (object, object*)
    int PyArray_IntpFromSequence (object, npy_intp *, int)
    object PyArray_Concatenate (object, int)
    object PyArray_InnerProduct (object, object)
    object PyArray_MatrixProduct (object, object)
    object PyArray_CopyAndTranspose (object)
    object PyArray_Correlate (object, object, int)
    int PyArray_TypestrConvert (int, int)
    #int PyArray_DescrConverter (object, dtype*)
    #int PyArray_DescrConverter2 (object, dtype*)
    int PyArray_IntpConverter (object, PyArray_Dims *)
    #int PyArray_BufferConverter (object, chunk)
    int PyArray_AxisConverter (object, int *)
    int PyArray_BoolConverter (object, npy_bool *)
    int PyArray_ByteorderConverter (object, char *)
    int PyArray_OrderConverter (object, NPY_ORDER *)
    unsigned char PyArray_EquivTypes (dtype, dtype)
    #object PyArray_Zeros (int, npy_intp *, dtype, int)
    #object PyArray_Empty (int, npy_intp *, dtype, int)
    object PyArray_Where (object, object, object)
    object PyArray_Arange (double, double, double, int)
    #object PyArray_ArangeObj (object, object, object, dtype)
    int PyArray_SortkindConverter (object, NPY_SORTKIND *)
    object PyArray_LexSort (object, int)
    object PyArray_Round (ndarray, int, ndarray)
    unsigned char PyArray_EquivTypenums (int, int)
    int PyArray_RegisterDataType (dtype)
    int PyArray_RegisterCastFunc (dtype, int, PyArray_VectorUnaryFunc *)
    int PyArray_RegisterCanCast (dtype, int, NPY_SCALARKIND)
    #void PyArray_InitArrFuncs (PyArray_ArrFuncs *)
    object PyArray_IntTupleFromIntp (int, npy_intp *)
    int PyArray_TypeNumFromName (char *)
    int PyArray_ClipmodeConverter (object, NPY_CLIPMODE *)
    #int PyArray_OutputConverter (object, ndarray*)
    object PyArray_BroadcastToShape (object, npy_intp *, int)
    void _PyArray_SigintHandler (int)
    void* _PyArray_GetSigintBuf ()
    #int PyArray_DescrAlignConverter (object, dtype*)
    #int PyArray_DescrAlignConverter2 (object, dtype*)
    int PyArray_SearchsideConverter (object, void *)
    object PyArray_CheckAxis (ndarray, int *, int)
    npy_intp PyArray_OverflowMultiplyList (npy_intp *, int)
    int PyArray_CompareString (char *, char *, size_t)
    

# Typedefs that matches the runtime dtype objects in
# the numpy module.

# The ones that are commented out needs an IFDEF function
# in Cython to enable them only on the right systems.

ctypedef npy_int8       int8_t
ctypedef npy_int16      int16_t
ctypedef npy_int32      int32_t
ctypedef npy_int64      int64_t
#ctypedef npy_int96      int96_t
#ctypedef npy_int128     int128_t

ctypedef npy_uint8      uint8_t
ctypedef npy_uint16     uint16_t
ctypedef npy_uint32     uint32_t
ctypedef npy_uint64     uint64_t
#ctypedef npy_uint96     uint96_t
#ctypedef npy_uint128    uint128_t

ctypedef npy_float32    float32_t
ctypedef npy_float64    float64_t
#ctypedef npy_float80    float80_t
#ctypedef npy_float128   float128_t

ctypedef float complex  complex64_t
ctypedef double complex complex128_t

# The int types are mapped a bit surprising --
# numpy.int corresponds to 'l' and numpy.long to 'q'
ctypedef npy_long       int_t
ctypedef npy_longlong   long_t


ctypedef npy_ulong      uint_t
ctypedef npy_ulonglong  ulong_t

ctypedef npy_double     float_t
ctypedef npy_double     double_t
ctypedef npy_longdouble longdouble_t

ctypedef npy_cfloat      cfloat_t
ctypedef npy_cdouble     cdouble_t
ctypedef npy_clongdouble clongdouble_t

ctypedef npy_cdouble     complex_t

cdef inline object PyArray_MultiIterNew1(a):
    return PyArray_MultiIterNew(1, <void*>a)

cdef inline object PyArray_MultiIterNew2(a, b):
    return PyArray_MultiIterNew(2, <void*>a, <void*>b)

cdef inline object PyArray_MultiIterNew3(a, b, c):
    return PyArray_MultiIterNew(3, <void*>a, <void*>b, <void*> c)

cdef inline object PyArray_MultiIterNew4(a, b, c, d):
    return PyArray_MultiIterNew(4, <void*>a, <void*>b, <void*>c, <void*> d)

cdef inline object PyArray_MultiIterNew5(a, b, c, d, e):
    return PyArray_MultiIterNew(5, <void*>a, <void*>b, <void*>c, <void*> d, 
<void*> e)

cdef inline char* _util_dtypestring(dtype descr, char* f, char* end, int* 
offset) except NULL:
    # Recursive utility function used in __getbuffer__ to get format
    # string. The new location in the format string is returned.

    cdef dtype child
    cdef int delta_offset
    cdef tuple i
    cdef int endian_detector = 1
    cdef bint little_endian = ((<char*>&endian_detector)[0] != 0)
    cdef tuple fields
    
    for childname in descr.names:
        fields = descr.fields[childname]
        child, new_offset = fields

        if (end - f) - (new_offset - offset[0]) < 15:
            raise RuntimeError(u"Format string allocated too short, see comment 
in numpy.pxd")

        if ((child.byteorder == '>' and little_endian) or
            (child.byteorder == '<' and not little_endian)):
            raise ValueError(u"Non-native byte order not supported")
            # One could encode it in the format string and have Cython
            # complain instead, BUT: < and > in format strings also imply
            # standardized sizes for datatypes, and we rely on native in
            # order to avoid reencoding data types based on their size.
            #
            # A proper PEP 3118 exporter for other clients than Cython
            # must deal properly with this!
        
        # Output padding bytes
        while offset[0] < new_offset:
            f[0] = 120 # "x"; pad byte
            f += 1
            offset[0] += 1

        offset[0] += child.itemsize
            
        if not PyDataType_HASFIELDS(child):
            t = child.type_num
            if end - f < 5:
                raise RuntimeError(u"Format string allocated too short.")

            # Until ticket #99 is fixed, use integers to avoid warnings
            if   t == NPY_BYTE:        f[0] =  98 #"b"
            elif t == NPY_UBYTE:       f[0] =  66 #"B"
            elif t == NPY_SHORT:       f[0] = 104 #"h"
            elif t == NPY_USHORT:      f[0] =  72 #"H"
            elif t == NPY_INT:         f[0] = 105 #"i"
            elif t == NPY_UINT:        f[0] =  73 #"I"
            elif t == NPY_LONG:        f[0] = 108 #"l"
            elif t == NPY_ULONG:       f[0] = 76  #"L"
            elif t == NPY_LONGLONG:    f[0] = 113 #"q"
            elif t == NPY_ULONGLONG:   f[0] = 81  #"Q"
            elif t == NPY_FLOAT:       f[0] = 102 #"f"
            elif t == NPY_DOUBLE:      f[0] = 100 #"d"
            elif t == NPY_LONGDOUBLE:  f[0] = 103 #"g"
            elif t == NPY_CFLOAT:      f[0] = 90; f[1] = 102; f += 1 # Zf
            elif t == NPY_CDOUBLE:     f[0] = 90; f[1] = 100; f += 1 # Zd
            elif t == NPY_CLONGDOUBLE: f[0] = 90; f[1] = 103; f += 1 # Zg
            elif t == NPY_OBJECT:      f[0] = 79 #"O"
            else:
                raise ValueError(u"unknown dtype code in numpy.pxd (%d)" % t)
            f += 1
        else:
            # Cython ignores struct boundary information ("T{...}"),
            # so don't output it
            f = _util_dtypestring(child, f, end, offset)
    return f


#
# ufunc API
#

cdef extern from "numpy/ufuncobject.h":

    ctypedef void (*PyUFuncGenericFunction) (char **, npy_intp *, npy_intp *, 
void *)
    
    ctypedef extern class numpy.ufunc [object PyUFuncObject]:
        cdef:
            int nin, nout, nargs
            int identity
            PyUFuncGenericFunction *functions
            void **data
            int ntypes
            int check_return
            char *name, *types
            char *doc
            void *ptr
            PyObject *obj
            PyObject *userloops

    cdef enum:
        PyUFunc_Zero
        PyUFunc_One
        PyUFunc_None
        UFUNC_ERR_IGNORE
        UFUNC_ERR_WARN
        UFUNC_ERR_RAISE
        UFUNC_ERR_CALL
        UFUNC_ERR_PRINT
        UFUNC_ERR_LOG
        UFUNC_MASK_DIVIDEBYZERO
        UFUNC_MASK_OVERFLOW
        UFUNC_MASK_UNDERFLOW
        UFUNC_MASK_INVALID
        UFUNC_SHIFT_DIVIDEBYZERO
        UFUNC_SHIFT_OVERFLOW
        UFUNC_SHIFT_UNDERFLOW
        UFUNC_SHIFT_INVALID
        UFUNC_FPE_DIVIDEBYZERO
        UFUNC_FPE_OVERFLOW
        UFUNC_FPE_UNDERFLOW
        UFUNC_FPE_INVALID
        UFUNC_ERR_DEFAULT
        UFUNC_ERR_DEFAULT2

    object PyUFunc_FromFuncAndData(PyUFuncGenericFunction *,
          void **, char *, int, int, int, int, char *, char *, int)
    int PyUFunc_RegisterLoopForType(ufunc, int,
                                    PyUFuncGenericFunction, int *, void *)
    int PyUFunc_GenericFunction \
        (ufunc, PyObject *, PyObject *, PyArrayObject **)
    void PyUFunc_f_f_As_d_d \
         (char **, npy_intp *, npy_intp *, void *)
    void PyUFunc_d_d \
         (char **, npy_intp *, npy_intp *, void *)
    void PyUFunc_f_f \
         (char **, npy_intp *, npy_intp *, void *)
    void PyUFunc_g_g \
         (char **, npy_intp *, npy_intp *, void *)
    void PyUFunc_F_F_As_D_D \
         (char **, npy_intp *, npy_intp *, void *)
    void PyUFunc_F_F \
         (char **, npy_intp *, npy_intp *, void *)
    void PyUFunc_D_D \
         (char **, npy_intp *, npy_intp *, void *)
    void PyUFunc_G_G \
         (char **, npy_intp *, npy_intp *, void *)
    void PyUFunc_O_O \
         (char **, npy_intp *, npy_intp *, void *)
    void PyUFunc_ff_f_As_dd_d \
         (char **, npy_intp *, npy_intp *, void *)
    void PyUFunc_ff_f \
         (char **, npy_intp *, npy_intp *, void *)
    void PyUFunc_dd_d \
         (char **, npy_intp *, npy_intp *, void *)
    void PyUFunc_gg_g \
         (char **, npy_intp *, npy_intp *, void *)
    void PyUFunc_FF_F_As_DD_D \
         (char **, npy_intp *, npy_intp *, void *)
    void PyUFunc_DD_D \
         (char **, npy_intp *, npy_intp *, void *)
    void PyUFunc_FF_F \
         (char **, npy_intp *, npy_intp *, void *)
    void PyUFunc_GG_G \
         (char **, npy_intp *, npy_intp *, void *)
    void PyUFunc_OO_O \
         (char **, npy_intp *, npy_intp *, void *)
    void PyUFunc_O_O_method \
         (char **, npy_intp *, npy_intp *, void *)
    void PyUFunc_OO_O_method \
         (char **, npy_intp *, npy_intp *, void *)
    void PyUFunc_On_Om \
         (char **, npy_intp *, npy_intp *, void *)
    int PyUFunc_GetPyValues \
        (char *, int *, int *, PyObject **)
    int PyUFunc_checkfperr \
           (int, PyObject *, int *)
    void PyUFunc_clearfperr()
    int PyUFunc_getfperr()
    int PyUFunc_handlefperr \
        (int, PyObject *, int, int *)
    int PyUFunc_ReplaceLoopBySignature \
        (ufunc, PyUFuncGenericFunction, int *, PyUFuncGenericFunction *)
    object PyUFunc_FromFuncAndDataAndSignature \
             (PyUFuncGenericFunction *, void **, char *, int, int, int,
              int, char *, char *, int, char *)



    void import_ufunc()
from slatec cimport drc3jj_fast
import sys
import numpy as np
cimport numpy as np
from stdlib cimport malloc, free
from python_exc cimport PyErr_NoMemory
cimport cython

# Do not change dtype without changing Fortran function called!
dtype = np.double
ctypedef double dtype_t

np.import_array()

cdef extern from "math.h":
    double fabs(double) nogil
    double ceil(double) nogil
    bint isnan(double x) nogil

cdef inline double fmax(double a, double b) nogil:
    return a if b < a else b

cdef extern from "numpy/npy_math.h":
    cdef double NPY_NAN
        

DEF ERR_NO_MEM = -2

def wigner_3j(l1, l2, l3, m1, m2, m3=None, out=None):
    """
    wigner_3j(l1, l2, l3, m1, m2, m3=None, out=None)
    
    Computes the Wigner 3j symbol. If ``m3`` is not provided, it will
    be taken as ``-m1-m2`` (which is the only value which will not
    yield 0 as a result). The result has type np.double; passing in
    arrays of np.double for processing will be most efficient.

    The Wigner 3j symbol is 0 if:
    
     - ``l1 < abs(m1)``, ``l2 < abs(m2)`` or ``l3 < abs(m3)``,
       or any l negative
     - ``abs(l1 - l2) <= l3 <= l1 + l2`` is not satisfied
     - ``m1 + m2 + m3 != 0``

    Although conventionally the parameters satisfy certain
    restrictions, such as being integers or integers plus 1/2, the
    restrictions imposed on input to this function are somewhat
    weaker. [drc3jj]_ contains details.

    Various errors concerning non-integer arguments will result in NaN
    value as well as optionally reporting an error according to the
    setting of np.seterr(). NaNs in input are silently propagated.

    The algorithm is suited to applications in which large quantum
    numbers arise, such as in molecular dynamics.

    See [drc3jj]_ for full details and references.
    
    :Examples:

    >>> wigner_3j(1, 1, 0, 0, 0) - (-np.sqrt(1/3.)) < 1e-4
    True

    >>> wigner_3j(1, 1, 0, 0, 0, 0) - (-np.sqrt(1/3.)) < 1e-4
    True

    >>> wigner_3j(1, 1, 0, 0, 0, 1)
    0.0

    >>> wigner_3j(-1, 1, 0, 0, 0, 0)
    0.0

    >>> print("%.3e" % wigner_3j(100, 40, 60, -10, 20))
    9.830e-05
    
    >>> abs(wigner_3j(100, 0, 60, 0, 0)) < 1e-200
    True

    >>> wigner_3j(1, 1, 0, 2, -2)
    0.0

    >>> np.round(wigner_3j(l1=[1,2,3], l2=[[1],[2],[3]], l3=3,
    ...           m1=1, m2=0), 5)
    array([[ 0.     ,  0.27603, -0.10911],
           [ 0.23905, -0.16903, -0.14639],
           [-0.26726, -0.06901,  0.1543 ]])

    >>> olderr = np.seterr(invalid='raise')
    >>> wigner_3j(1.1, 1.1, 1.8, 0, 0)
    Traceback (most recent call last):
       ...
    FloatingPointError: drc3jj failed with non-integer error; NaN created

    >>> dummy=np.seterr(invalid='ignore')
    >>> wigner_3j([1.1,1], [1.1,0], [1.8,1], 0, 0)
    array([        NaN, -0.57735027])

    >>> def callback(a, b): print repr(('callback', a, b))
    >>> dummy = np.seterr(invalid='call')
    >>> oldcall = np.seterrcall(callback)
    >>> wigner_3j([1.1,1], [1.1,0], [1.8,1], 0, 0)
    ('callback', 'invalid', 8)
    array([        NaN, -0.57735027])

    >>> dummy = np.seterr(**olderr)
    >>> dummy = np.seterrcall(oldcall)

    >>> wigner_3j(np.nan, 1, 0, 2, -2)
    nan

    :Authors:
     - Gordon, R. G., Harvard University (drc3jj)
     - Schulten, K., Max Planck Institute (drc3jj)
     - Seljebotn, D. S, University of Oslo (Python wrapper)

    .. [drc3jj]_ http://netlib.org/slatec/src/drc3jj.f
    """
    cdef:
        double l1val, l2val, l3val, m1val, m2val, m3val
        double l1min, l1max, outval
        np.broadcast it
        double* thrcof = NULL
        Py_ssize_t thrcof_needed, thrcof_len, ier
        bint nan_created = False
        bint m3_provided

    l1 = np.asarray(l1, dtype)
    l2 = np.asarray(l2, dtype)
    l3 = np.asarray(l3, dtype)
    m1 = np.asarray(m1, dtype)
    m2 = np.asarray(m2, dtype)
    m3_provided = (m3 is not None)
    if m3 is None: m3 = 0 # must broadcast over something

    # Figuring out the broadcast shape is not a seperate utility
    # function so need to create a dummy broadcast object.
    it = np.broadcast(l1, l2, l3, m1, m2, m3)
    shape = (<object>it).shape
    if out is None:
        out = np.empty(shape, dtype)
    else:
        if out.shape != shape:
            raise ValueError(u"out argument has incorrect shape")
        if out.dtype != dtype:
            raise ValueError(u"out argument has incorrect dtype")
    it = np.broadcast(l1, l2, l3, m1, m2, m3, out)

    with nogil:
        thrcof_len = 32
        thrcof = <double*>malloc(thrcof_len * sizeof(dtype_t))
        while np.PyArray_MultiIter_NOTDONE(it):
            l1val = (<dtype_t*>np.PyArray_MultiIter_DATA(it, 0))[0]
            l2val = (<dtype_t*>np.PyArray_MultiIter_DATA(it, 1))[0]
            l3val = (<dtype_t*>np.PyArray_MultiIter_DATA(it, 2))[0]
            m1val = (<dtype_t*>np.PyArray_MultiIter_DATA(it, 3))[0]
            m2val = (<dtype_t*>np.PyArray_MultiIter_DATA(it, 4))[0]
            if m3_provided:
                m3val = (<dtype_t*>np.PyArray_MultiIter_DATA(it, 5))[0]
            else:
                m3val = -m1val - m2val

            if (isnan(l1val) or isnan(l2val) or isnan(l3val) or
                isnan(m1val) or isnan(m2val)):
                outval = NPY_NAN
            elif m3_provided and m3val != -m1val -m2val:
                outval = 0
            else:
                while True:
                    ier = drc3jj_fast(l2val, l3val, m2val, m3val,
                                      &l1min, &l1max,
                                      thrcof, thrcof_len)
                    if ier == 5: # need to reallocate thrcof
                        thrcof_len *= 2
                        free(thrcof)
                        thrcof = <double*>malloc(
                            thrcof_len * sizeof(dtype_t))
                        if thrcof == NULL:
                            thrcof_len = ERR_NO_MEM
                            break # cannot raise exception within nogil
                        continue #
                    else:
                        break
                if thrcof_len == ERR_NO_MEM:
                    break # life without exceptions...

                # Now, ier != 5
                if ier == 1 or ier == 4:
                    # Parameters do not satisfy constraints; in these
                    # cases the 3j symbol is defined as 0
                    outval = 0
                elif ier == 2 or ier == 3:
                    # IER=2 Either L2+ABS(M2) or L3+ABS(M3) non-integer.
                    # IER=3 L1MAX-L1MIN not an integer.
                    #
                    # We interpret this as parameters which do not make
                    # sense => nan
                    outval = NPY_NAN
                    nan_created = True
                else:
                    outval = thrcof[<Py_ssize_t>(l1val - l1min)]

            (<dtype_t*>np.PyArray_MultiIter_DATA(it, 6))[0] = outval
            np.PyArray_MultiIter_NEXT(it)

    if thrcof_len == ERR_NO_MEM:
        PyErr_NoMemory() # raises OutOfMemoryError
    if thrcof != NULL:
        free(thrcof)        
    if nan_created:
        handlertype = np.geterr()['invalid']
        msg = u'drc3jj failed with non-integer error; NaN created'
        if handlertype == b'ignore':
            pass # check for common easy case first
        elif handlertype == b'raise':
            raise FloatingPointError(msg)
        elif handlertype == b'warn':
            import warnings
            warnings.warn(RuntimeWarning(msg))
        elif handlertype == b'call':
            import inspect
            call = np.geterrcall()
            if inspect.isfunction(call) or inspect.isbuiltin(call):
                call(b'invalid', 8)
            else:
                call.write(msg)
    if out.shape == ():
        out = out[()]
    return out

## drc3jj_fast


__test__ = {
    "wigner_3j (line 6)" : wigner_3j.__doc__
}
_______________________________________________
Cython-dev mailing list
[email protected]
http://codespeak.net/mailman/listinfo/cython-dev

Reply via email to