Neal Becker wrote:
I need to write functions that apply element-wise numpy arrays, and should
be independent of the number of dimensions.
numpy has a mechanism for generic (dimension-independent) iteration over
elements of the array, but is there any way to use this (or implement
something similar) in cython?
There's two methods: ufuncs and multi-iterators. ufuncs is the most
common one -- search for ufunc on the Cython wiki, there should be an
example somewhere.
I just did this using multi-iterators (which I had to do because I
needed some context -- a temporary buffer -- during the calculation).
Attaching my code for calculating a Wigner 3j symbol elementwise with
full broadcasting.
(It is not as fast as it could be -- it is possible to extract out the
inner loop and have it as a C loop rather than rely on the iterator,
which is faster. I didn't bother yet though, mainly because each Wigner
symbol calculation is rather heavy.)
The NumPy docs is rather good in this area, check there next! (search
for the multiiterator functions I use + ufuncs)
Also you need a newer numpy.pxd than the one shipped with Cython for
both ufuncs and multiiterators. Just replace the one in Cython/Includes
with the attachment. I will include it in the next Cython release.
--
Dag Sverre
# NumPy static imports for Cython
#
# If any of the PyArray_* functions are called, import_array must be
# called first.
#
# This also defines backwards-compatability buffer acquisition
# code for use in Python 2.x (or Python <= 2.5 when NumPy starts
# implementing PEP-3118 directly).
#
# Because of laziness, the format string of the buffer is statically
# allocated. Increase the size if this is not enough, or submit a
# patch to do this properly.
#
# Author: Dag Sverre Seljebotn
#
DEF _buffer_format_string_len = 255
cimport python_buffer as pybuf
from python_object cimport PyObject
cimport stdlib
cimport stdio
cdef extern from "Python.h":
ctypedef int Py_intptr_t
cdef extern from "numpy/arrayobject.h":
ctypedef Py_intptr_t npy_intp
cdef enum NPY_TYPES:
NPY_BOOL
NPY_BYTE
NPY_UBYTE
NPY_SHORT
NPY_USHORT
NPY_INT
NPY_UINT
NPY_LONG
NPY_ULONG
NPY_LONGLONG
NPY_ULONGLONG
NPY_FLOAT
NPY_DOUBLE
NPY_LONGDOUBLE
NPY_CFLOAT
NPY_CDOUBLE
NPY_CLONGDOUBLE
NPY_OBJECT
NPY_STRING
NPY_UNICODE
NPY_VOID
NPY_NTYPES
NPY_NOTYPE
enum NPY_ORDER:
NPY_ANYORDER
NPY_CORDER
NPY_FORTRANORDER
enum NPY_CLIPMODE:
NPY_CLIP
NPY_WRAP
NPY_RAISE
enum NPY_SCALARKIND:
NPY_NOSCALAR,
NPY_BOOL_SCALAR,
NPY_INTPOS_SCALAR,
NPY_INTNEG_SCALAR,
NPY_FLOAT_SCALAR,
NPY_COMPLEX_SCALAR,
NPY_OBJECT_SCALAR
enum NPY_SORTKIND:
NPY_QUICKSORT
NPY_HEAPSORT
NPY_MERGESORT
cdef enum requirements:
NPY_C_CONTIGUOUS
NPY_F_CONTIGUOUS
NPY_CONTIGUOUS
NPY_FORTRAN
NPY_OWNDATA
NPY_FORCECAST
NPY_ENSURECOPY
NPY_ENSUREARRAY
NPY_ELEMENTSTRIDES
NPY_ALIGNED
NPY_NOTSWAPPED
NPY_WRITEABLE
NPY_UPDATEIFCOPY
NPY_ARR_HAS_DESCR
NPY_BEHAVED
NPY_BEHAVED_NS
NPY_CARRAY
NPY_CARRAY_RO
NPY_FARRAY
NPY_FARRAY_RO
NPY_DEFAULT
NPY_IN_ARRAY
NPY_OUT_ARRAY
NPY_INOUT_ARRAY
NPY_IN_FARRAY
NPY_OUT_FARRAY
NPY_INOUT_FARRAY
NPY_UPDATE_ALL
cdef enum:
NPY_MAXDIMS
npy_intp NPY_MAX_ELSIZE
ctypedef void (*PyArray_VectorUnaryFunc)(void *, void *, npy_intp, void *,
void *)
ctypedef class numpy.dtype [object PyArray_Descr]:
# Use PyDataType_* macros when possible, however there are no macros
# for accessing some of the fields, so some are defined. Please
# ask on cython-dev if you need more.
cdef int type_num
cdef int itemsize "elsize"
cdef char byteorder
cdef object fields
cdef tuple names
ctypedef extern class numpy.flatiter [object PyArrayIterObject]:
# Use through macros
pass
ctypedef extern class numpy.broadcast [object PyArrayMultiIterObject]:
# Use through macros
pass
ctypedef struct PyArrayObject:
# For use in situations where ndarray can't replace PyArrayObject*,
# like PyArrayObject**.
pass
ctypedef class numpy.ndarray [object PyArrayObject]:
cdef __cythonbufferdefaults__ = {"mode": "strided"}
cdef:
# Only taking a few of the most commonly used and stable fields.
# One should use PyArray_* macros instead to access the C fields.
char *data
int ndim "nd"
npy_intp *shape "dimensions"
npy_intp *strides
dtype descr
# Note: This syntax (function definition in pxd files) is an
# experimental exception made for __getbuffer__ and __releasebuffer__
# -- the details of this may change.
def __getbuffer__(ndarray self, Py_buffer* info, int flags):
# This implementation of getbuffer is geared towards Cython
# requirements, and does not yet fullfill the PEP.
# In particular strided access is always provided regardless
# of flags
cdef int copy_shape, i, ndim
cdef int endian_detector = 1
cdef bint little_endian = ((<char*>&endian_detector)[0] != 0)
ndim = PyArray_NDIM(self)
if sizeof(npy_intp) != sizeof(Py_ssize_t):
copy_shape = 1
else:
copy_shape = 0
if ((flags & pybuf.PyBUF_C_CONTIGUOUS == pybuf.PyBUF_C_CONTIGUOUS)
and not PyArray_CHKFLAGS(self, NPY_C_CONTIGUOUS)):
raise ValueError(u"ndarray is not C contiguous")
if ((flags & pybuf.PyBUF_F_CONTIGUOUS == pybuf.PyBUF_F_CONTIGUOUS)
and not PyArray_CHKFLAGS(self, NPY_F_CONTIGUOUS)):
raise ValueError(u"ndarray is not Fortran contiguous")
info.buf = PyArray_DATA(self)
info.ndim = ndim
if copy_shape:
# Allocate new buffer for strides and shape info. This is
allocated
# as one block, strides first.
info.strides = <Py_ssize_t*>stdlib.malloc(sizeof(Py_ssize_t) *
ndim * 2)
info.shape = info.strides + ndim
for i in range(ndim):
info.strides[i] = PyArray_STRIDES(self)[i]
info.shape[i] = PyArray_DIMS(self)[i]
else:
info.strides = <Py_ssize_t*>PyArray_STRIDES(self)
info.shape = <Py_ssize_t*>PyArray_DIMS(self)
info.suboffsets = NULL
info.itemsize = PyArray_ITEMSIZE(self)
info.readonly = not PyArray_ISWRITEABLE(self)
cdef int t
cdef char* f = NULL
cdef dtype descr = self.descr
cdef list stack
cdef int offset
cdef bint hasfields = PyDataType_HASFIELDS(descr)
if not hasfields and not copy_shape:
# do not call releasebuffer
info.obj = None
else:
# need to call releasebuffer
info.obj = self
if not hasfields:
t = descr.type_num
if ((descr.byteorder == '>' and little_endian) or
(descr.byteorder == '<' and not little_endian)):
raise ValueError(u"Non-native byte order not supported")
if t == NPY_BYTE: f = "b"
elif t == NPY_UBYTE: f = "B"
elif t == NPY_SHORT: f = "h"
elif t == NPY_USHORT: f = "H"
elif t == NPY_INT: f = "i"
elif t == NPY_UINT: f = "I"
elif t == NPY_LONG: f = "l"
elif t == NPY_ULONG: f = "L"
elif t == NPY_LONGLONG: f = "q"
elif t == NPY_ULONGLONG: f = "Q"
elif t == NPY_FLOAT: f = "f"
elif t == NPY_DOUBLE: f = "d"
elif t == NPY_LONGDOUBLE: f = "g"
elif t == NPY_CFLOAT: f = "Zf"
elif t == NPY_CDOUBLE: f = "Zd"
elif t == NPY_CLONGDOUBLE: f = "Zg"
elif t == NPY_OBJECT: f = "O"
else:
raise ValueError(u"unknown dtype code in numpy.pxd (%d)" %
t)
info.format = f
return
else:
info.format = <char*>stdlib.malloc(_buffer_format_string_len)
info.format[0] = '^' # Native data types, manual alignment
offset = 0
f = _util_dtypestring(descr, info.format + 1,
info.format + _buffer_format_string_len,
&offset)
f[0] = 0 # Terminate format string
def __releasebuffer__(ndarray self, Py_buffer* info):
if PyArray_HASFIELDS(self):
stdlib.free(info.format)
if sizeof(npy_intp) != sizeof(Py_ssize_t):
stdlib.free(info.strides)
# info.shape was stored after info.strides in the same block
ctypedef signed char npy_bool
ctypedef signed char npy_byte
ctypedef signed short npy_short
ctypedef signed int npy_int
ctypedef signed long npy_long
ctypedef signed long long npy_longlong
ctypedef unsigned char npy_ubyte
ctypedef unsigned short npy_ushort
ctypedef unsigned int npy_uint
ctypedef unsigned long npy_ulong
ctypedef unsigned long long npy_ulonglong
ctypedef float npy_float
ctypedef double npy_double
ctypedef long double npy_longdouble
ctypedef signed char npy_int8
ctypedef signed short npy_int16
ctypedef signed int npy_int32
ctypedef signed long long npy_int64
ctypedef signed long long npy_int96
ctypedef signed long long npy_int128
ctypedef unsigned char npy_uint8
ctypedef unsigned short npy_uint16
ctypedef unsigned int npy_uint32
ctypedef unsigned long long npy_uint64
ctypedef unsigned long long npy_uint96
ctypedef unsigned long long npy_uint128
ctypedef float npy_float32
ctypedef double npy_float64
ctypedef long double npy_float80
ctypedef long double npy_float96
ctypedef long double npy_float128
ctypedef float complex npy_complex64
ctypedef double complex npy_complex128
ctypedef long double complex npy_complex120
ctypedef long double complex npy_complex192
ctypedef long double complex npy_complex256
ctypedef struct npy_cfloat:
double real
double imag
ctypedef struct npy_cdouble:
double real
double imag
ctypedef struct npy_clongdouble:
double real
double imag
ctypedef struct PyArray_Dims:
npy_intp *ptr
int len
void import_array()
#
# Macros from ndarrayobject.h
#
bint PyArray_CHKFLAGS(ndarray m, int flags)
bint PyArray_ISISCONTIGUOUS(ndarray m)
bint PyArray_ISWRITEABLE(ndarray m)
bint PyArray_ISALIGNED(ndarray m)
int PyArray_NDIM(ndarray)
bint PyArray_ISONESEGMENT(ndarray)
bint PyArray_ISFORTRAN(ndarray)
int PyArray_FORTRANIF(ndarray)
void* PyArray_DATA(ndarray)
char* PyArray_BYTES(ndarray)
npy_intp* PyArray_DIMS(ndarray)
npy_intp* PyArray_STRIDES(ndarray)
npy_intp PyArray_DIM(ndarray, size_t)
npy_intp PyArray_STRIDE(ndarray, size_t)
# object PyArray_BASE(ndarray) wrong refcount semantics
# dtype PyArray_DESCR(ndarray) wrong refcount semantics
int PyArray_FLAGS(ndarray)
npy_intp PyArray_ITEMSIZE(ndarray)
int PyArray_TYPE(ndarray arr)
object PyArray_GETITEM(ndarray arr, void *itemptr)
int PyArray_SETITEM(ndarray arr, void *itemptr, object obj)
bint PyTypeNum_ISBOOL(int)
bint PyTypeNum_ISUNSIGNED(int)
bint PyTypeNum_ISSIGNED(int)
bint PyTypeNum_ISINTEGER(int)
bint PyTypeNum_ISFLOAT(int)
bint PyTypeNum_ISNUMBER(int)
bint PyTypeNum_ISSTRING(int)
bint PyTypeNum_ISCOMPLEX(int)
bint PyTypeNum_ISPYTHON(int)
bint PyTypeNum_ISFLEXIBLE(int)
bint PyTypeNum_ISUSERDEF(int)
bint PyTypeNum_ISEXTENDED(int)
bint PyTypeNum_ISOBJECT(int)
bint PyDataType_ISBOOL(dtype)
bint PyDataType_ISUNSIGNED(dtype)
bint PyDataType_ISSIGNED(dtype)
bint PyDataType_ISINTEGER(dtype)
bint PyDataType_ISFLOAT(dtype)
bint PyDataType_ISNUMBER(dtype)
bint PyDataType_ISSTRING(dtype)
bint PyDataType_ISCOMPLEX(dtype)
bint PyDataType_ISPYTHON(dtype)
bint PyDataType_ISFLEXIBLE(dtype)
bint PyDataType_ISUSERDEF(dtype)
bint PyDataType_ISEXTENDED(dtype)
bint PyDataType_ISOBJECT(dtype)
bint PyDataType_HASFIELDS(dtype)
bint PyArray_ISBOOL(ndarray)
bint PyArray_ISUNSIGNED(ndarray)
bint PyArray_ISSIGNED(ndarray)
bint PyArray_ISINTEGER(ndarray)
bint PyArray_ISFLOAT(ndarray)
bint PyArray_ISNUMBER(ndarray)
bint PyArray_ISSTRING(ndarray)
bint PyArray_ISCOMPLEX(ndarray)
bint PyArray_ISPYTHON(ndarray)
bint PyArray_ISFLEXIBLE(ndarray)
bint PyArray_ISUSERDEF(ndarray)
bint PyArray_ISEXTENDED(ndarray)
bint PyArray_ISOBJECT(ndarray)
bint PyArray_HASFIELDS(ndarray)
bint PyArray_ISVARIABLE(ndarray)
bint PyArray_SAFEALIGNEDCOPY(ndarray)
bint PyArray_ISNBO(ndarray)
bint PyArray_IsNativeByteOrder(ndarray)
bint PyArray_ISNOTSWAPPED(ndarray)
bint PyArray_ISBYTESWAPPED(ndarray)
bint PyArray_FLAGSWAP(ndarray, int)
bint PyArray_ISCARRAY(ndarray)
bint PyArray_ISCARRAY_RO(ndarray)
bint PyArray_ISFARRAY(ndarray)
bint PyArray_ISFARRAY_RO(ndarray)
bint PyArray_ISBEHAVED(ndarray)
bint PyArray_ISBEHAVED_RO(ndarray)
bint PyDataType_ISNOTSWAPPED(dtype)
bint PyDataType_ISBYTESWAPPED(dtype)
bint PyArray_DescrCheck(object)
bint PyArray_Check(object)
bint PyArray_CheckExact(object)
# Cannot be supported due to out arg:
# bint PyArray_HasArrayInterfaceType(object, dtype, object, object&)
# bint PyArray_HasArrayInterface(op, out)
bint PyArray_IsZeroDim(object)
# Cannot be supported due to ## ## in macro:
# bint PyArray_IsScalar(object, verbatim work)
bint PyArray_CheckScalar(object)
bint PyArray_IsPythonNumber(object)
bint PyArray_IsPythonScalar(object)
bint PyArray_IsAnyScalar(object)
bint PyArray_CheckAnyScalar(object)
ndarray PyArray_GETCONTIGUOUS(ndarray)
bint PyArray_SAMESHAPE(ndarray, ndarray)
npy_intp PyArray_SIZE(ndarray)
npy_intp PyArray_NBYTES(ndarray)
object PyArray_FROM_O(object)
object PyArray_FROM_OF(object m, int flags)
bint PyArray_FROM_OT(object m, int type)
bint PyArray_FROM_OTF(object m, int type, int flags)
object PyArray_FROMANY(object m, int type, int min, int max, int flags)
bint PyArray_ZEROS(ndarray m, dims, int type, int fortran)
object PyArray_EMPTY(object m, dims, int type, int fortran)
void PyArray_FILLWBYTE(object, int val)
npy_intp PyArray_REFCOUNT(object)
object PyArray_ContiguousFromAny(op, int, int min_depth, int max_depth)
unsigned char PyArray_EquivArrTypes(ndarray a1, ndarray a2)
bint PyArray_EquivByteorders(int b1, int b2)
object PyArray_SimpleNew(int nd, npy_intp* dims, int typenum)
object PyArray_SimpleNewFromData(int nd, npy_intp* dims, int typenum, void*
data)
#object PyArray_SimpleNewFromDescr(int nd, npy_intp* dims, dtype descr)
object PyArray_ToScalar(void* data, ndarray arr)
void* PyArray_GETPTR1(ndarray m, npy_intp i)
void* PyArray_GETPTR2(ndarray m, npy_intp i, npy_intp j)
void* PyArray_GETPTR3(ndarray m, npy_intp i, npy_intp j, npy_intp k)
void* PyArray_GETPTR4(ndarray m, npy_intp i, npy_intp j, npy_intp k,
npy_intp l)
void PyArray_XDECREF_ERR(ndarray)
# Cannot be supported due to out arg
# void PyArray_DESCR_REPLACE(descr)
object PyArray_Copy(ndarray)
object PyArray_FromObject(object op, int type, int min_depth, int max_depth)
object PyArray_ContiguousFromObject(object op, int type, int min_depth, int
max_depth)
object PyArray_CopyFromObject(object op, int type, int min_depth, int
max_depth)
object PyArray_Cast(ndarray mp, int type_num)
object PyArray_Take(ndarray ap, object items, int axis)
object PyArray_Put(ndarray ap, object items, object values)
void PyArray_MultiIter_RESET(broadcast multi) nogil
void PyArray_MultiIter_NEXT(broadcast multi) nogil
void PyArray_MultiIter_GOTO(broadcast multi, npy_intp dest) nogil
void PyArray_MultiIter_GOTO1D(broadcast multi, npy_intp ind) nogil
void* PyArray_MultiIter_DATA(broadcast multi, npy_intp i) nogil
void PyArray_MultiIter_NEXTi(broadcast multi, npy_intp i) nogil
bint PyArray_MultiIter_NOTDONE(broadcast multi) nogil
# Functions from __multiarray_api.h
# Functions taking dtype and returning object/ndarray are disabled
# for now as they steal dtype references. I'm conservative and disable
# more than is probably needed until it can be checked further.
int PyArray_SetNumericOps (object)
object PyArray_GetNumericOps ()
int PyArray_INCREF (ndarray)
int PyArray_XDECREF (ndarray)
void PyArray_SetStringFunction (object, int)
dtype PyArray_DescrFromType (int)
object PyArray_TypeObjectFromType (int)
char * PyArray_Zero (ndarray)
char * PyArray_One (ndarray)
#object PyArray_CastToType (ndarray, dtype, int)
int PyArray_CastTo (ndarray, ndarray)
int PyArray_CastAnyTo (ndarray, ndarray)
int PyArray_CanCastSafely (int, int)
npy_bool PyArray_CanCastTo (dtype, dtype)
int PyArray_ObjectType (object, int)
dtype PyArray_DescrFromObject (object, dtype)
#ndarray* PyArray_ConvertToCommonType (object, int *)
dtype PyArray_DescrFromScalar (object)
dtype PyArray_DescrFromTypeObject (object)
npy_intp PyArray_Size (object)
#object PyArray_Scalar (void *, dtype, object)
#object PyArray_FromScalar (object, dtype)
void PyArray_ScalarAsCtype (object, void *)
#int PyArray_CastScalarToCtype (object, void *, dtype)
#int PyArray_CastScalarDirect (object, dtype, void *, int)
object PyArray_ScalarFromObject (object)
#PyArray_VectorUnaryFunc * PyArray_GetCastFunc (dtype, int)
object PyArray_FromDims (int, int *, int)
#object PyArray_FromDimsAndDataAndDescr (int, int *, dtype, char *)
#object PyArray_FromAny (object, dtype, int, int, int, object)
object PyArray_EnsureArray (object)
object PyArray_EnsureAnyArray (object)
#object PyArray_FromFile (stdio.FILE *, dtype, npy_intp, char *)
#object PyArray_FromString (char *, npy_intp, dtype, npy_intp, char *)
#object PyArray_FromBuffer (object, dtype, npy_intp, npy_intp)
#object PyArray_FromIter (object, dtype, npy_intp)
object PyArray_Return (ndarray)
#object PyArray_GetField (ndarray, dtype, int)
#int PyArray_SetField (ndarray, dtype, int, object)
object PyArray_Byteswap (ndarray, npy_bool)
object PyArray_Resize (ndarray, PyArray_Dims *, int, NPY_ORDER)
int PyArray_MoveInto (ndarray, ndarray)
int PyArray_CopyInto (ndarray, ndarray)
int PyArray_CopyAnyInto (ndarray, ndarray)
int PyArray_CopyObject (ndarray, object)
object PyArray_NewCopy (ndarray, NPY_ORDER)
object PyArray_ToList (ndarray)
object PyArray_ToString (ndarray, NPY_ORDER)
int PyArray_ToFile (ndarray, stdio.FILE *, char *, char *)
int PyArray_Dump (object, object, int)
object PyArray_Dumps (object, int)
int PyArray_ValidType (int)
void PyArray_UpdateFlags (ndarray, int)
object PyArray_New (type, int, npy_intp *, int, npy_intp *, void *, int,
int, object)
#object PyArray_NewFromDescr (type, dtype, int, npy_intp *, npy_intp *,
void *, int, object)
#dtype PyArray_DescrNew (dtype)
dtype PyArray_DescrNewFromType (int)
double PyArray_GetPriority (object, double)
object PyArray_IterNew (object)
object PyArray_MultiIterNew (int, ...)
int PyArray_PyIntAsInt (object)
npy_intp PyArray_PyIntAsIntp (object)
int PyArray_Broadcast (broadcast)
void PyArray_FillObjectArray (ndarray, object)
int PyArray_FillWithScalar (ndarray, object)
npy_bool PyArray_CheckStrides (int, int, npy_intp, npy_intp, npy_intp *,
npy_intp *)
dtype PyArray_DescrNewByteorder (dtype, char)
object PyArray_IterAllButAxis (object, int *)
#object PyArray_CheckFromAny (object, dtype, int, int, int, object)
#object PyArray_FromArray (ndarray, dtype, int)
object PyArray_FromInterface (object)
object PyArray_FromStructInterface (object)
#object PyArray_FromArrayAttr (object, dtype, object)
#NPY_SCALARKIND PyArray_ScalarKind (int, ndarray*)
int PyArray_CanCoerceScalar (int, int, NPY_SCALARKIND)
object PyArray_NewFlagsObject (object)
npy_bool PyArray_CanCastScalar (type, type)
#int PyArray_CompareUCS4 (npy_ucs4 *, npy_ucs4 *, register size_t)
int PyArray_RemoveSmallest (broadcast)
int PyArray_ElementStrides (object)
void PyArray_Item_INCREF (char *, dtype)
void PyArray_Item_XDECREF (char *, dtype)
object PyArray_FieldNames (object)
object PyArray_Transpose (ndarray, PyArray_Dims *)
object PyArray_TakeFrom (ndarray, object, int, ndarray, NPY_CLIPMODE)
object PyArray_PutTo (ndarray, object, object, NPY_CLIPMODE)
object PyArray_PutMask (ndarray, object, object)
object PyArray_Repeat (ndarray, object, int)
object PyArray_Choose (ndarray, object, ndarray, NPY_CLIPMODE)
int PyArray_Sort (ndarray, int, NPY_SORTKIND)
object PyArray_ArgSort (ndarray, int, NPY_SORTKIND)
object PyArray_SearchSorted (ndarray, object, NPY_SEARCHSIDE)
object PyArray_ArgMax (ndarray, int, ndarray)
object PyArray_ArgMin (ndarray, int, ndarray)
object PyArray_Reshape (ndarray, object)
object PyArray_Newshape (ndarray, PyArray_Dims *, NPY_ORDER)
object PyArray_Squeeze (ndarray)
#object PyArray_View (ndarray, dtype, type)
object PyArray_SwapAxes (ndarray, int, int)
object PyArray_Max (ndarray, int, ndarray)
object PyArray_Min (ndarray, int, ndarray)
object PyArray_Ptp (ndarray, int, ndarray)
object PyArray_Mean (ndarray, int, int, ndarray)
object PyArray_Trace (ndarray, int, int, int, int, ndarray)
object PyArray_Diagonal (ndarray, int, int, int)
object PyArray_Clip (ndarray, object, object, ndarray)
object PyArray_Conjugate (ndarray, ndarray)
object PyArray_Nonzero (ndarray)
object PyArray_Std (ndarray, int, int, ndarray, int)
object PyArray_Sum (ndarray, int, int, ndarray)
object PyArray_CumSum (ndarray, int, int, ndarray)
object PyArray_Prod (ndarray, int, int, ndarray)
object PyArray_CumProd (ndarray, int, int, ndarray)
object PyArray_All (ndarray, int, ndarray)
object PyArray_Any (ndarray, int, ndarray)
object PyArray_Compress (ndarray, object, int, ndarray)
object PyArray_Flatten (ndarray, NPY_ORDER)
object PyArray_Ravel (ndarray, NPY_ORDER)
npy_intp PyArray_MultiplyList (npy_intp *, int)
int PyArray_MultiplyIntList (int *, int)
void * PyArray_GetPtr (ndarray, npy_intp*)
int PyArray_CompareLists (npy_intp *, npy_intp *, int)
#int PyArray_AsCArray (object*, void *, npy_intp *, int, dtype)
#int PyArray_As1D (object*, char **, int *, int)
#int PyArray_As2D (object*, char ***, int *, int *, int)
int PyArray_Free (object, void *)
#int PyArray_Converter (object, object*)
int PyArray_IntpFromSequence (object, npy_intp *, int)
object PyArray_Concatenate (object, int)
object PyArray_InnerProduct (object, object)
object PyArray_MatrixProduct (object, object)
object PyArray_CopyAndTranspose (object)
object PyArray_Correlate (object, object, int)
int PyArray_TypestrConvert (int, int)
#int PyArray_DescrConverter (object, dtype*)
#int PyArray_DescrConverter2 (object, dtype*)
int PyArray_IntpConverter (object, PyArray_Dims *)
#int PyArray_BufferConverter (object, chunk)
int PyArray_AxisConverter (object, int *)
int PyArray_BoolConverter (object, npy_bool *)
int PyArray_ByteorderConverter (object, char *)
int PyArray_OrderConverter (object, NPY_ORDER *)
unsigned char PyArray_EquivTypes (dtype, dtype)
#object PyArray_Zeros (int, npy_intp *, dtype, int)
#object PyArray_Empty (int, npy_intp *, dtype, int)
object PyArray_Where (object, object, object)
object PyArray_Arange (double, double, double, int)
#object PyArray_ArangeObj (object, object, object, dtype)
int PyArray_SortkindConverter (object, NPY_SORTKIND *)
object PyArray_LexSort (object, int)
object PyArray_Round (ndarray, int, ndarray)
unsigned char PyArray_EquivTypenums (int, int)
int PyArray_RegisterDataType (dtype)
int PyArray_RegisterCastFunc (dtype, int, PyArray_VectorUnaryFunc *)
int PyArray_RegisterCanCast (dtype, int, NPY_SCALARKIND)
#void PyArray_InitArrFuncs (PyArray_ArrFuncs *)
object PyArray_IntTupleFromIntp (int, npy_intp *)
int PyArray_TypeNumFromName (char *)
int PyArray_ClipmodeConverter (object, NPY_CLIPMODE *)
#int PyArray_OutputConverter (object, ndarray*)
object PyArray_BroadcastToShape (object, npy_intp *, int)
void _PyArray_SigintHandler (int)
void* _PyArray_GetSigintBuf ()
#int PyArray_DescrAlignConverter (object, dtype*)
#int PyArray_DescrAlignConverter2 (object, dtype*)
int PyArray_SearchsideConverter (object, void *)
object PyArray_CheckAxis (ndarray, int *, int)
npy_intp PyArray_OverflowMultiplyList (npy_intp *, int)
int PyArray_CompareString (char *, char *, size_t)
# Typedefs that matches the runtime dtype objects in
# the numpy module.
# The ones that are commented out needs an IFDEF function
# in Cython to enable them only on the right systems.
ctypedef npy_int8 int8_t
ctypedef npy_int16 int16_t
ctypedef npy_int32 int32_t
ctypedef npy_int64 int64_t
#ctypedef npy_int96 int96_t
#ctypedef npy_int128 int128_t
ctypedef npy_uint8 uint8_t
ctypedef npy_uint16 uint16_t
ctypedef npy_uint32 uint32_t
ctypedef npy_uint64 uint64_t
#ctypedef npy_uint96 uint96_t
#ctypedef npy_uint128 uint128_t
ctypedef npy_float32 float32_t
ctypedef npy_float64 float64_t
#ctypedef npy_float80 float80_t
#ctypedef npy_float128 float128_t
ctypedef float complex complex64_t
ctypedef double complex complex128_t
# The int types are mapped a bit surprising --
# numpy.int corresponds to 'l' and numpy.long to 'q'
ctypedef npy_long int_t
ctypedef npy_longlong long_t
ctypedef npy_ulong uint_t
ctypedef npy_ulonglong ulong_t
ctypedef npy_double float_t
ctypedef npy_double double_t
ctypedef npy_longdouble longdouble_t
ctypedef npy_cfloat cfloat_t
ctypedef npy_cdouble cdouble_t
ctypedef npy_clongdouble clongdouble_t
ctypedef npy_cdouble complex_t
cdef inline object PyArray_MultiIterNew1(a):
return PyArray_MultiIterNew(1, <void*>a)
cdef inline object PyArray_MultiIterNew2(a, b):
return PyArray_MultiIterNew(2, <void*>a, <void*>b)
cdef inline object PyArray_MultiIterNew3(a, b, c):
return PyArray_MultiIterNew(3, <void*>a, <void*>b, <void*> c)
cdef inline object PyArray_MultiIterNew4(a, b, c, d):
return PyArray_MultiIterNew(4, <void*>a, <void*>b, <void*>c, <void*> d)
cdef inline object PyArray_MultiIterNew5(a, b, c, d, e):
return PyArray_MultiIterNew(5, <void*>a, <void*>b, <void*>c, <void*> d,
<void*> e)
cdef inline char* _util_dtypestring(dtype descr, char* f, char* end, int*
offset) except NULL:
# Recursive utility function used in __getbuffer__ to get format
# string. The new location in the format string is returned.
cdef dtype child
cdef int delta_offset
cdef tuple i
cdef int endian_detector = 1
cdef bint little_endian = ((<char*>&endian_detector)[0] != 0)
cdef tuple fields
for childname in descr.names:
fields = descr.fields[childname]
child, new_offset = fields
if (end - f) - (new_offset - offset[0]) < 15:
raise RuntimeError(u"Format string allocated too short, see comment
in numpy.pxd")
if ((child.byteorder == '>' and little_endian) or
(child.byteorder == '<' and not little_endian)):
raise ValueError(u"Non-native byte order not supported")
# One could encode it in the format string and have Cython
# complain instead, BUT: < and > in format strings also imply
# standardized sizes for datatypes, and we rely on native in
# order to avoid reencoding data types based on their size.
#
# A proper PEP 3118 exporter for other clients than Cython
# must deal properly with this!
# Output padding bytes
while offset[0] < new_offset:
f[0] = 120 # "x"; pad byte
f += 1
offset[0] += 1
offset[0] += child.itemsize
if not PyDataType_HASFIELDS(child):
t = child.type_num
if end - f < 5:
raise RuntimeError(u"Format string allocated too short.")
# Until ticket #99 is fixed, use integers to avoid warnings
if t == NPY_BYTE: f[0] = 98 #"b"
elif t == NPY_UBYTE: f[0] = 66 #"B"
elif t == NPY_SHORT: f[0] = 104 #"h"
elif t == NPY_USHORT: f[0] = 72 #"H"
elif t == NPY_INT: f[0] = 105 #"i"
elif t == NPY_UINT: f[0] = 73 #"I"
elif t == NPY_LONG: f[0] = 108 #"l"
elif t == NPY_ULONG: f[0] = 76 #"L"
elif t == NPY_LONGLONG: f[0] = 113 #"q"
elif t == NPY_ULONGLONG: f[0] = 81 #"Q"
elif t == NPY_FLOAT: f[0] = 102 #"f"
elif t == NPY_DOUBLE: f[0] = 100 #"d"
elif t == NPY_LONGDOUBLE: f[0] = 103 #"g"
elif t == NPY_CFLOAT: f[0] = 90; f[1] = 102; f += 1 # Zf
elif t == NPY_CDOUBLE: f[0] = 90; f[1] = 100; f += 1 # Zd
elif t == NPY_CLONGDOUBLE: f[0] = 90; f[1] = 103; f += 1 # Zg
elif t == NPY_OBJECT: f[0] = 79 #"O"
else:
raise ValueError(u"unknown dtype code in numpy.pxd (%d)" % t)
f += 1
else:
# Cython ignores struct boundary information ("T{...}"),
# so don't output it
f = _util_dtypestring(child, f, end, offset)
return f
#
# ufunc API
#
cdef extern from "numpy/ufuncobject.h":
ctypedef void (*PyUFuncGenericFunction) (char **, npy_intp *, npy_intp *,
void *)
ctypedef extern class numpy.ufunc [object PyUFuncObject]:
cdef:
int nin, nout, nargs
int identity
PyUFuncGenericFunction *functions
void **data
int ntypes
int check_return
char *name, *types
char *doc
void *ptr
PyObject *obj
PyObject *userloops
cdef enum:
PyUFunc_Zero
PyUFunc_One
PyUFunc_None
UFUNC_ERR_IGNORE
UFUNC_ERR_WARN
UFUNC_ERR_RAISE
UFUNC_ERR_CALL
UFUNC_ERR_PRINT
UFUNC_ERR_LOG
UFUNC_MASK_DIVIDEBYZERO
UFUNC_MASK_OVERFLOW
UFUNC_MASK_UNDERFLOW
UFUNC_MASK_INVALID
UFUNC_SHIFT_DIVIDEBYZERO
UFUNC_SHIFT_OVERFLOW
UFUNC_SHIFT_UNDERFLOW
UFUNC_SHIFT_INVALID
UFUNC_FPE_DIVIDEBYZERO
UFUNC_FPE_OVERFLOW
UFUNC_FPE_UNDERFLOW
UFUNC_FPE_INVALID
UFUNC_ERR_DEFAULT
UFUNC_ERR_DEFAULT2
object PyUFunc_FromFuncAndData(PyUFuncGenericFunction *,
void **, char *, int, int, int, int, char *, char *, int)
int PyUFunc_RegisterLoopForType(ufunc, int,
PyUFuncGenericFunction, int *, void *)
int PyUFunc_GenericFunction \
(ufunc, PyObject *, PyObject *, PyArrayObject **)
void PyUFunc_f_f_As_d_d \
(char **, npy_intp *, npy_intp *, void *)
void PyUFunc_d_d \
(char **, npy_intp *, npy_intp *, void *)
void PyUFunc_f_f \
(char **, npy_intp *, npy_intp *, void *)
void PyUFunc_g_g \
(char **, npy_intp *, npy_intp *, void *)
void PyUFunc_F_F_As_D_D \
(char **, npy_intp *, npy_intp *, void *)
void PyUFunc_F_F \
(char **, npy_intp *, npy_intp *, void *)
void PyUFunc_D_D \
(char **, npy_intp *, npy_intp *, void *)
void PyUFunc_G_G \
(char **, npy_intp *, npy_intp *, void *)
void PyUFunc_O_O \
(char **, npy_intp *, npy_intp *, void *)
void PyUFunc_ff_f_As_dd_d \
(char **, npy_intp *, npy_intp *, void *)
void PyUFunc_ff_f \
(char **, npy_intp *, npy_intp *, void *)
void PyUFunc_dd_d \
(char **, npy_intp *, npy_intp *, void *)
void PyUFunc_gg_g \
(char **, npy_intp *, npy_intp *, void *)
void PyUFunc_FF_F_As_DD_D \
(char **, npy_intp *, npy_intp *, void *)
void PyUFunc_DD_D \
(char **, npy_intp *, npy_intp *, void *)
void PyUFunc_FF_F \
(char **, npy_intp *, npy_intp *, void *)
void PyUFunc_GG_G \
(char **, npy_intp *, npy_intp *, void *)
void PyUFunc_OO_O \
(char **, npy_intp *, npy_intp *, void *)
void PyUFunc_O_O_method \
(char **, npy_intp *, npy_intp *, void *)
void PyUFunc_OO_O_method \
(char **, npy_intp *, npy_intp *, void *)
void PyUFunc_On_Om \
(char **, npy_intp *, npy_intp *, void *)
int PyUFunc_GetPyValues \
(char *, int *, int *, PyObject **)
int PyUFunc_checkfperr \
(int, PyObject *, int *)
void PyUFunc_clearfperr()
int PyUFunc_getfperr()
int PyUFunc_handlefperr \
(int, PyObject *, int, int *)
int PyUFunc_ReplaceLoopBySignature \
(ufunc, PyUFuncGenericFunction, int *, PyUFuncGenericFunction *)
object PyUFunc_FromFuncAndDataAndSignature \
(PyUFuncGenericFunction *, void **, char *, int, int, int,
int, char *, char *, int, char *)
void import_ufunc()
from slatec cimport drc3jj_fast
import sys
import numpy as np
cimport numpy as np
from stdlib cimport malloc, free
from python_exc cimport PyErr_NoMemory
cimport cython
# Do not change dtype without changing Fortran function called!
dtype = np.double
ctypedef double dtype_t
np.import_array()
cdef extern from "math.h":
double fabs(double) nogil
double ceil(double) nogil
bint isnan(double x) nogil
cdef inline double fmax(double a, double b) nogil:
return a if b < a else b
cdef extern from "numpy/npy_math.h":
cdef double NPY_NAN
DEF ERR_NO_MEM = -2
def wigner_3j(l1, l2, l3, m1, m2, m3=None, out=None):
"""
wigner_3j(l1, l2, l3, m1, m2, m3=None, out=None)
Computes the Wigner 3j symbol. If ``m3`` is not provided, it will
be taken as ``-m1-m2`` (which is the only value which will not
yield 0 as a result). The result has type np.double; passing in
arrays of np.double for processing will be most efficient.
The Wigner 3j symbol is 0 if:
- ``l1 < abs(m1)``, ``l2 < abs(m2)`` or ``l3 < abs(m3)``,
or any l negative
- ``abs(l1 - l2) <= l3 <= l1 + l2`` is not satisfied
- ``m1 + m2 + m3 != 0``
Although conventionally the parameters satisfy certain
restrictions, such as being integers or integers plus 1/2, the
restrictions imposed on input to this function are somewhat
weaker. [drc3jj]_ contains details.
Various errors concerning non-integer arguments will result in NaN
value as well as optionally reporting an error according to the
setting of np.seterr(). NaNs in input are silently propagated.
The algorithm is suited to applications in which large quantum
numbers arise, such as in molecular dynamics.
See [drc3jj]_ for full details and references.
:Examples:
>>> wigner_3j(1, 1, 0, 0, 0) - (-np.sqrt(1/3.)) < 1e-4
True
>>> wigner_3j(1, 1, 0, 0, 0, 0) - (-np.sqrt(1/3.)) < 1e-4
True
>>> wigner_3j(1, 1, 0, 0, 0, 1)
0.0
>>> wigner_3j(-1, 1, 0, 0, 0, 0)
0.0
>>> print("%.3e" % wigner_3j(100, 40, 60, -10, 20))
9.830e-05
>>> abs(wigner_3j(100, 0, 60, 0, 0)) < 1e-200
True
>>> wigner_3j(1, 1, 0, 2, -2)
0.0
>>> np.round(wigner_3j(l1=[1,2,3], l2=[[1],[2],[3]], l3=3,
... m1=1, m2=0), 5)
array([[ 0. , 0.27603, -0.10911],
[ 0.23905, -0.16903, -0.14639],
[-0.26726, -0.06901, 0.1543 ]])
>>> olderr = np.seterr(invalid='raise')
>>> wigner_3j(1.1, 1.1, 1.8, 0, 0)
Traceback (most recent call last):
...
FloatingPointError: drc3jj failed with non-integer error; NaN created
>>> dummy=np.seterr(invalid='ignore')
>>> wigner_3j([1.1,1], [1.1,0], [1.8,1], 0, 0)
array([ NaN, -0.57735027])
>>> def callback(a, b): print repr(('callback', a, b))
>>> dummy = np.seterr(invalid='call')
>>> oldcall = np.seterrcall(callback)
>>> wigner_3j([1.1,1], [1.1,0], [1.8,1], 0, 0)
('callback', 'invalid', 8)
array([ NaN, -0.57735027])
>>> dummy = np.seterr(**olderr)
>>> dummy = np.seterrcall(oldcall)
>>> wigner_3j(np.nan, 1, 0, 2, -2)
nan
:Authors:
- Gordon, R. G., Harvard University (drc3jj)
- Schulten, K., Max Planck Institute (drc3jj)
- Seljebotn, D. S, University of Oslo (Python wrapper)
.. [drc3jj]_ http://netlib.org/slatec/src/drc3jj.f
"""
cdef:
double l1val, l2val, l3val, m1val, m2val, m3val
double l1min, l1max, outval
np.broadcast it
double* thrcof = NULL
Py_ssize_t thrcof_needed, thrcof_len, ier
bint nan_created = False
bint m3_provided
l1 = np.asarray(l1, dtype)
l2 = np.asarray(l2, dtype)
l3 = np.asarray(l3, dtype)
m1 = np.asarray(m1, dtype)
m2 = np.asarray(m2, dtype)
m3_provided = (m3 is not None)
if m3 is None: m3 = 0 # must broadcast over something
# Figuring out the broadcast shape is not a seperate utility
# function so need to create a dummy broadcast object.
it = np.broadcast(l1, l2, l3, m1, m2, m3)
shape = (<object>it).shape
if out is None:
out = np.empty(shape, dtype)
else:
if out.shape != shape:
raise ValueError(u"out argument has incorrect shape")
if out.dtype != dtype:
raise ValueError(u"out argument has incorrect dtype")
it = np.broadcast(l1, l2, l3, m1, m2, m3, out)
with nogil:
thrcof_len = 32
thrcof = <double*>malloc(thrcof_len * sizeof(dtype_t))
while np.PyArray_MultiIter_NOTDONE(it):
l1val = (<dtype_t*>np.PyArray_MultiIter_DATA(it, 0))[0]
l2val = (<dtype_t*>np.PyArray_MultiIter_DATA(it, 1))[0]
l3val = (<dtype_t*>np.PyArray_MultiIter_DATA(it, 2))[0]
m1val = (<dtype_t*>np.PyArray_MultiIter_DATA(it, 3))[0]
m2val = (<dtype_t*>np.PyArray_MultiIter_DATA(it, 4))[0]
if m3_provided:
m3val = (<dtype_t*>np.PyArray_MultiIter_DATA(it, 5))[0]
else:
m3val = -m1val - m2val
if (isnan(l1val) or isnan(l2val) or isnan(l3val) or
isnan(m1val) or isnan(m2val)):
outval = NPY_NAN
elif m3_provided and m3val != -m1val -m2val:
outval = 0
else:
while True:
ier = drc3jj_fast(l2val, l3val, m2val, m3val,
&l1min, &l1max,
thrcof, thrcof_len)
if ier == 5: # need to reallocate thrcof
thrcof_len *= 2
free(thrcof)
thrcof = <double*>malloc(
thrcof_len * sizeof(dtype_t))
if thrcof == NULL:
thrcof_len = ERR_NO_MEM
break # cannot raise exception within nogil
continue #
else:
break
if thrcof_len == ERR_NO_MEM:
break # life without exceptions...
# Now, ier != 5
if ier == 1 or ier == 4:
# Parameters do not satisfy constraints; in these
# cases the 3j symbol is defined as 0
outval = 0
elif ier == 2 or ier == 3:
# IER=2 Either L2+ABS(M2) or L3+ABS(M3) non-integer.
# IER=3 L1MAX-L1MIN not an integer.
#
# We interpret this as parameters which do not make
# sense => nan
outval = NPY_NAN
nan_created = True
else:
outval = thrcof[<Py_ssize_t>(l1val - l1min)]
(<dtype_t*>np.PyArray_MultiIter_DATA(it, 6))[0] = outval
np.PyArray_MultiIter_NEXT(it)
if thrcof_len == ERR_NO_MEM:
PyErr_NoMemory() # raises OutOfMemoryError
if thrcof != NULL:
free(thrcof)
if nan_created:
handlertype = np.geterr()['invalid']
msg = u'drc3jj failed with non-integer error; NaN created'
if handlertype == b'ignore':
pass # check for common easy case first
elif handlertype == b'raise':
raise FloatingPointError(msg)
elif handlertype == b'warn':
import warnings
warnings.warn(RuntimeWarning(msg))
elif handlertype == b'call':
import inspect
call = np.geterrcall()
if inspect.isfunction(call) or inspect.isbuiltin(call):
call(b'invalid', 8)
else:
call.write(msg)
if out.shape == ():
out = out[()]
return out
## drc3jj_fast
__test__ = {
"wigner_3j (line 6)" : wigner_3j.__doc__
}
_______________________________________________
Cython-dev mailing list
[email protected]
http://codespeak.net/mailman/listinfo/cython-dev