Dear Martin,

Thank you for your response. Yes I agree that only some local computations 
are necessary to implement the identities.
Yes I would be interested in this feature and trying to implement it. Do 
you have any suggestions on where I should start and overall practices I 
should follow?

Thank you,
Alex

On Wednesday, June 17, 2020 at 1:19:29 AM UTC-4, Martin Kronbichler wrote:
>
> Dear Alex,
>
> This has been on my list of things to implement and verify with deal.II 
> over a range of examples for quite a while, so I'm glad you bringing the 
> topic up. It is definitely true that our way to define Jacobians does not 
> take those identities into account, but I believe we should add support for 
> them. The nice thing is that only some local computations are necessary, so 
> having the option to use it in the polynomial mapping classes would be 
> great. If you would be interested in this feature and trying to implement 
> things, I'd be happy to guide you to the right places in the code.
>
> Best,
> Martin
> On 17.06.20 06:02, Alexander Cicchino wrote:
>
> Thank you for responding Wolfgang Bangerth.
>
> The GCL condition comes from the discretized scheme satisfying free-stream 
> preservation. I will demonstrate this for 2D below, (can be interpreted for 
> spectral, DG, finite difference, finite volume etc):
> Consider the conservation law: \frac{\partial W}{\partial t} + 
> \frac{\partial F}{\partial x} +\frac{\partial G}{\partial y} =0
> Transforming this to the reference computational space (x,y)->(\xi, \eta):
> J*\frac{\partial W}{\partial t} + J*\frac{ \partial \xi}{\partial x} * 
> \frac{\partial F}{\partial \xi} + J * \frac{ \partial \eta}{\partial x}* 
> \frac{\partial F}{\partial \eta} + J * \frac{ \partial \xi}{\partial y} * 
> \frac{\partial G}{\partial \xi} + J*\frac{ \partial \eta}{\partial 
> y}*\frac{\partial G}{\partial \eta}
> Putting this in conservative form results in:
> J\frac{\partial W}{\partial t} + \frac{\partial}{\partial \xi} ( 
> J*F*\frac{\partial \xi}{\partial x} +J*G*\frac{\partial \xi}{\partial y} ) 
> + \frac{\partial}{\partial \eta} ( J*F*\frac{\partial \eta}{\partial x} 
> +J*G*\frac{\partial \eta}{\partial y} ) - F*( GCL in x) - G*(GCL in y) =0
>
> where GCL in x = \frac{\partial }{\partial \xi} ( det(J)* \frac{\partial 
> \xi 
>  }{\partial x}) + \frac{\partial }{\partial \eta}( det(J)* \frac{\partial 
> \eta}{\partial x} )
> similarly for y.
>
> So for the conservative numerical scheme to satisfy free stream 
> preservation, the GCL conditions must go to zero.
> For linear grids, there are no issues with the classical definition for 
> the inverse of the Jacobian, but what Kopriva had shown (before him Thomas 
> and Lombard), was that the metric Jacobian has to be calculated in either a 
> "conservative curl form" or an "invariant curl form" since it reduces the 
> GCL condition to the divergence of a curl, which is always discretely 
> satisfied. In the paper by Kopriva, he shows this, an example in 3D:
>  Analytically
> J*\frac{\partial \xi}{\partial x} = \frac{\partial z}{\partial \zeta} * 
> \frac{\partial y}{\partial \eta} - \frac{\partial z}{\partial \eta} * 
> \frac{\partial y}{\partial \zeta}
>
> but the primer doesn't satisfy free-stream preservation while the latter 
> ("conservative curl form") does.
>
> I will put together a unit test for a curvilinear grid. 
>
> Thank you,
> Alex
>
> On Tuesday, June 16, 2020 at 10:24:59 PM UTC-4, Wolfgang Bangerth wrote: 
>>
>>
>> Alexander, 
>>
>> > I am wondering if anybody has also found that the inverse of the 
>> Jacobian from 
>> > FE Values, with MappingQGeneric does not satisfy the Geometric 
>> Conservation 
>> > Law (GCL), in the sense of: 
>> > 
>> > Kopriva, David A. "Metric identities and the discontinuous spectral 
>> element 
>> > method on curvilinear meshes." /Journal of Scientific Computing/ 26.3 
>> (2006): 301. 
>> > 
>> > on curvilinear elements/manifolds in 3D. 
>> > That is: 
>> > \frac{\partial }{\partial \hat{x}_1} *det(J)* \frac{\partial \hat{x}_1 
>> > }{\partial x_1} + \frac{\partial }{\partial \hat{x}_2} *det(J)* 
>> \frac{\partial 
>> > \hat{x}_2}{\partial x} + \frac{\partial }{\partial \hat{x}_3} * 
>> > det(J)*\frac{\partial \hat{x}_3 }{\partial x_1} != 0 (GCL says it 
>> should =0, 
>> > similarly for x_2 and x_3) 
>> > 
>> > If so or if not, also, has anybody found a remedy to have the inverse 
>> of the 
>> > Jacobian from FE Values with MappingQGeneric to satisfy the GCL. 
>>
>> I'm not sure any of us have ever thought about it. (I haven't -- but I 
>> really 
>> shouldn't speak for anyone else.) Can you explain what this equality 
>> represents? Why should it hold? 
>>
>> I'm also unsure whether we've ever checked whether it holds (exactly or 
>> approximately). Can you create a small test program that illustrates the 
>> behavior you are seeing? 
>>
>> Best 
>>   W. 
>>
>> -- 
>> ------------------------------------------------------------------------ 
>> Wolfgang Bangerth          email:                 bang...@colostate.edu 
>>                             www: http://www.math.colostate.edu/~bangerth/ 
>>
>> -- 
> The deal.II project is located at http://www.dealii.org/
> For mailing list/forum options, see 
> https://groups.google.com/d/forum/dealii?hl=en
> --- 
> You received this message because you are subscribed to the Google Groups 
> "deal.II User Group" group.
> To unsubscribe from this group and stop receiving emails from it, send an 
> email to dea...@googlegroups.com <javascript:>.
> To view this discussion on the web visit 
> https://groups.google.com/d/msgid/dealii/4f313231-dbb3-445f-923c-9eaff17ab783o%40googlegroups.com
>  
> <https://groups.google.com/d/msgid/dealii/4f313231-dbb3-445f-923c-9eaff17ab783o%40googlegroups.com?utm_medium=email&utm_source=footer>
> .
>
>

-- 
The deal.II project is located at http://www.dealii.org/
For mailing list/forum options, see 
https://groups.google.com/d/forum/dealii?hl=en
--- 
You received this message because you are subscribed to the Google Groups 
"deal.II User Group" group.
To unsubscribe from this group and stop receiving emails from it, send an email 
to dealii+unsubscr...@googlegroups.com.
To view this discussion on the web visit 
https://groups.google.com/d/msgid/dealii/b764b4b7-02d2-4139-95d9-68c30ad4f2a9o%40googlegroups.com.

Reply via email to