Main disadvantages of official JavaDB build:
1. JDBC only connector

2. JDBC is catastrophically slow

3. SQL reusing does not solve architecture problems

4. Embed configuration is not always possible/sometimes is not always desirable

5. There is no storage engine porting available(JavaDB storage engines are not compatible for non-Java databases)

6. Importing/exporting of DDL of other database vendors. Bad migration from Oracle/SQL Server/PostreSQL/MySQL/MSQL/HyperSQL

7. Is not clearly understood how to inject additional JOIN/UNION algorithms/strategies

8. SQL result records could not be transformed afterwards but before sent to client lib – all transformations are extra heavy for client application

9. Custom column types, serialization and indexing support for those custom types – nothing serious at this moment

10. No actual compatibility tests for Oracle, SQL Server

What would be grate to be supported in JavaDB:

1. Java to bytecode & bytecode to native build with configuring what parts to be built as native C/C++ and called via JNI and what features to be configured on
2. Sun Studio tests tools for JNI and JavaDB in particular:
a. Java to C

b. C to Java

c. C to Java to C

d. Java – C – Java

e. Performance tips for JVM/Sun Studio/JNI over JVM

3. OpenSolaris/Solaris configuration
4. libumem with JNI

5. SQL support transforming SELECT requests – data transformations

6. WSDL publishing when deploying JavaDB

a. XML formatter unlike binary. Less speed but more flexibility

b. AXIS for publishing Java objects as Web services

7. Implementing other gateways:

a. Servlet

b. Applet

c. HTTP Server

i. As a variant RESTful: less URL length -& better carrying capacity
ii. Stress testing for qualified stability and failure-resistance
8. Table columns extensibility
9. Floating row count extensibility
10. Importing JavaDB configuration from XML on-the-fly

11. RPC support based on JavaDB core

a. Ability to build JavaDB with embed RPC support
b. JDBC support could be switched on/off(thus RPC could be primary tactic for client connectivity)

12. VIEWS generation support from XML, SQL + XML

13. Same as in (11) but using http://xmlrpc-c.sourceforge.net/ from the client side

14. libumem + http://xmlrpc-c.sourceforge.net/ threw Sun Studio compiler support

15. HTTP routes for HTTP server gateway:

a. Route redirections for separate JavaDB/Derby servers

b. Hot plug of redirection configurations instead of long & heavy files like .htaccess

c. Caching support for HTTP routes

d. Mirroring from the side of HSQLDB http gateway implementation (JavaDB + HSQLDB replication)

16. JavaDB with MQ support performance:

a. JavaDB using non-embed configuration with separated ActiveMQ broker

b. Swapping between different message brokers at runtime

17. JavaDB embed into JMS broker

18. Implementing an SQL storage engine, in witch a BLACKHOLE-like table where inserted rows via SQL will be automatically grabbed with message broker and sent to specific endpoint

19. RabbitMQ broker

a. ActiveMQ as Java solution vs RabbitMQ as R-lang based solution

20. WebDAV with JavaDB as storage with embed/non-embed configuration on Sun Java System Web Server

a. Good idea is to use memcacheq – when there is cached messages and cached redirects

21. Using Java Fork/Join Framework for JavaDB/JMS queues

a. Implementation of joining two or more message streams at runtime

b. While joining several streams to one joining of messages should be prioritized

c. Implementation of on-the-fly swap of two messages from parallel message streams (but with same priority on both for compatibility with priorities features)

