Hi Fokko,
Thanks so much for sharing. I am using version 3.2.1. Is this not supported in
3.2.1?
I do get the error with the `col` syntax:
df2.writeTo(spark_table_path).using("iceberg").overwrite(col("tid") >= 2)
The stack trace would look like this:
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
1 from pyspark.sql.functions import col
----> 2 df2.writeTo(spark_table_path).using("iceberg").overwrite(col("tid") >=
2)
...pyspark/sql/readwriter.py in overwrite(self, condition)
1164 the output table.
1165 """
-> 1166 self._jwriter.overwrite(condition)
1167
1168 @since(3.1)
...py4j/java_gateway.py in __call__(self, *args)
1311
1312 def __call__(self, *args):
-> 1313 args_command, temp_args = self._build_args(*args)
1314
1315 command = proto.CALL_COMMAND_NAME +\
...py4j/java_gateway.py in _build_args(self, *args)
1275 def _build_args(self, *args):
1276 if self.converters is not None and len(self.converters) > 0:
-> 1277 (new_args, temp_args) = self._get_args(args)
1278 else:
1279 new_args = args
...py4j/java_gateway.py in _get_args(self, args)
1262 for converter in self.gateway_client.converters:
1263 if converter.can_convert(arg):
-> 1264 temp_arg = converter.convert(arg,
self.gateway_client)
1265 temp_args.append(temp_arg)
1266 new_args.append(temp_arg)
...py4j/java_collections.py in convert(self, object, gateway_client)
508 ArrayList = JavaClass("java.util.ArrayList", gateway_client)
509 java_list = ArrayList()
--> 510 for element in object:
511 java_list.add(element)
512 return java_list
...pyspark/sql/column.py in __iter__(self)
461
462 def __iter__(self):
--> 463 raise TypeError("Column is not iterable")
464
465 # string methods
TypeError: Column is not iterable
Thanks!
Best,
Ha
From: Fokko Driesprong <[email protected]>
Sent: Friday, June 28, 2024 3:00 PM
To: [email protected]
Subject: Re: Iceberg - PySpark overwrite with a condition
Hey Ha,
What version of Spark are you using? Can you share the whole stack trace? I
tried to reproduce it locally and it worked fine:
pyspark --packages org.apache.iceberg:iceberg-spark-runtime-3.5_2.12:1.5.2\
--conf
spark.sql.extensions=org.apache.iceberg.spark.extensions.IcebergSparkSessionExtensions
\
--conf
spark.sql.catalog.spark_catalog=org.apache.iceberg.spark.SparkSessionCatalog \
--conf spark.sql.catalog.spark_catalog.type=hive \
--conf spark.sql.catalog.local=org.apache.iceberg.spark.SparkCatalog \
--conf spark.sql.catalog.local.type=hadoop \
--conf spark.sql.catalog.local.warehouse=$PWD/warehouse \
--conf spark.sql.defaultCatalog=local
Python 3.9.6 (default, Feb 3 2024, 15:58:27)
[Clang 15.0.0 (clang-1500.3.9.4)] on darwin
Welcome to
____ __
/ __/__ ___ _____/ /__
_\ \/ _ \/ _ `/ __/ '_/
/__ / .__/\_,_/_/ /_/\_\ version 3.5.1
/_/
Using Python version 3.9.6 (default, Feb 3 2024 15:58:27)
Spark context Web UI available at
http://secure-web.cisco.com/1AplqucVgy6zNuU83jHXzTaAD7IXV0U88upo3R0ciGSYtjHwLm9Bdtd78mSwe_bPBtysvIxaZmASm2vknr_GVtMRAgGMde99uUqvLdu1fTxVt8ptznXMo4blxxjNIVJA4-7Cm59oYdA7m0fmKvhYtYy59vrlM4tAGHgE-_oq5HLnogBWQpe1hLalhCvXA78yHcTAYLxNPPka3mPFVSsQhJ5qX908IWNbeGG17g9lUKML0NumrAjj6Q8Izqs-z8MPx/http%3A%2F%2F192.168.1.10%3A4040
Spark context available as 'sc' (master = local[*], app id =
local-1719599873923).
SparkSession available as 'spark'.
>>> table_name = "local.test.person_with_age"
>>>
>>> spark.sql(f"""
... CREATE TABLE {table_name} (
... name string,
... age int
... )
... USING iceberg
... PARTITIONED BY (age);
... """).show()
++
||
++
++
>>> spark.table(table_name).show()
+----+---+
|name|age|
+----+---+
+----+---+
>>> persons = [('Fokko', 1), ('Gurbe', 2), ('Pieter', 2)]
>>> df = spark.createDataFrame(persons, ['name', 'age'])
>>> df.writeTo(table_name).append()
>>> spark.table(table_name).show()
+------+---+
| name|age|
+------+---+
| Fokko| 1|
| Gurbe| 2|
|Pieter| 2|
+------+---+
>>> new_person = [('Rho', 2)]
>>> df_overwrite = spark.createDataFrame(new_person, ['name', 'age'])
>>> from pyspark.sql.functions import col
>>> df_overwrite.writeTo(table_name).overwrite(col("age") >= 2)
>>> spark.table(table_name).show()
+-----+---+
| name|age|
+-----+---+
| Rho| 2|
|Fokko| 1|
+-----+---+
The syntax with the col is the way to go. I hope this helps and let me know if
this doesn't work for you.
Kind regards,
Fokko
Op vr 28 jun 2024 om 18:09 schreef Ha Cao
<[email protected]<mailto:[email protected]>>:
Hi Ajantha,
Thanks for replying! The example, however, is in Java. I figure that that
syntax probably only works for Java and Scala. I have tried similarly for
PySpark but still got `Column is not iterable` with:
df.writeTo(spark_table_path).using("iceberg").overwrite(col("time") >
target_timestamp)
For this, I get `Column object is not callable`:
df.writeTo(spark_table_path).using("iceberg").overwrite(col("time").less(target_timestamp))
The only example I can find in the PySpark codebase is
https://github.com/apache/spark/blob/master/python/pyspark/sql/tests/test_readwriter.py#L251
but even with this, it throws `Column is not iterable`. I cannot find any
other test case that tests `overwrite()` as a method.
Thank you!
Best,
Ha
From: Ajantha Bhat <[email protected]<mailto:[email protected]>>
Sent: Friday, June 28, 2024 3:52 AM
To: [email protected]<mailto:[email protected]>
Subject: Re: Iceberg - PySpark overwrite with a condition
Hi,
Please refer this doc:
https://iceberg.apache.org/docs/nightly/spark-writes/#overwriting-data
We do have some test cases for the same:
https://github.com/apache/iceberg/blob/91fbcaa62c25308aa815557dd2c0041f75530705/spark/v3.5/spark/src/test/java/org/apache/iceberg/spark/sql/PartitionedWritesTestBase.java#L153
- Ajantha
On Fri, Jun 28, 2024 at 1:00 AM Ha Cao
<[email protected]<mailto:[email protected]>> wrote:
Hello,
I am experimenting with PySpark’s DataFrameWriterV2
overwrite()<https://spark.apache.org/docs/latest/api/python/reference/pyspark.sql/api/pyspark.sql.DataFrameWriterV2.overwrite.html>
to an Iceberg table with existing data in a target partition. My goal is that
instead of overwriting the entire partition, it will only overwrite specific
rows that match the condition. However, I can’t get it to work with any syntax
and I keep getting “Column is not iterable”. I have tried:
df.writeTo(spark_table_path).using("iceberg").overwrite(df.tid)
df.writeTo(spark_table_path).using("iceberg").overwrite(df.tid.isin(1))
df.writeTo(spark_table_path).using("iceberg").overwrite(df.tid >= 1)
and all of these syntaxes fail with “Column is not iterable”.
What is the correct syntax for this? I also think that there is a possibility
that Iceberg-PySpark integration doesn’t support overwrite, but I don’t know
how to confirm this.
Thank you so much!
Best,
Ha