Hi all : A few day later, I post a bug about No-Durable topic consumer client receive message got out of heap exception see at https://issues.apache.org/activemq/browse/AMQ-1325 This day I found the problem is the procuder send meessage faster and the consumer receiver message slower, If I set thread sleep 100 millisecond , the consumer client would not throw outofMemory exception. And I found org.apacke.activemq.MessageDispatchChannel using LinkedList has no max capacity, if the consumer recevie slower, the LinkedList size will increase, this is why throw outofMemory exception. So I changed MessageDispatchChannel below , it run has no outofMemory exception.
import java.util.ArrayList; import java.util.LinkedList; import java.util.List; import java.util.concurrent.TimeUnit; import java.util.concurrent.atomic.AtomicBoolean; import java.util.concurrent.atomic.AtomicInteger; import java.util.concurrent.locks.Condition; import java.util.concurrent.locks.ReentrantLock; import javax.jms.JMSException; import com.thtf.ezone.ezesb.mq.command.MessageDispatch; public class MessageDispatchChannel { //private final Object mutex = new Object(); private final LinkedList<MessageDispatch> list; private AtomicBoolean closed=new AtomicBoolean(false); private AtomicBoolean running=new AtomicBoolean(false); private final int capacity; /** Current number of elements */ private final AtomicInteger count = new AtomicInteger(0); /** Lock held by take, poll, etc */ private final ReentrantLock lock; /** Wait queue for waiting takes */ private final Condition notEmpty; /** Wait queue for waiting puts */ private final Condition notFull; public MessageDispatchChannel() { this.list = new LinkedList<MessageDispatch>(); this.capacity=Integer.MAX_VALUE; lock = new ReentrantLock(false); notEmpty = lock.newCondition(); notFull = lock.newCondition(); } public MessageDispatchChannel(int capacity) { if (capacity <= 0) throw new IllegalArgumentException(); this.list = new LinkedList<MessageDispatch>(); this.capacity=capacity; lock = new ReentrantLock(false); notEmpty = lock.newCondition(); notFull = lock.newCondition(); } public void enqueue(MessageDispatch message) throws InterruptedException{ if (closed.get() ||!running.get()){ return ; } // synchronized(mutex) { // if (list.size()>=this.capacity){ // try { // System.out.println(" overflow."); // mutex.wait(1000); // } catch (InterruptedException e) { // } // } // list.addLast(message); // mutex.notify(); // } if (message == null) throw new NullPointerException(); // Note: convention in all put/take/etc is to preset // local var holding count negative to indicate failure unless set. int c = -1; final ReentrantLock lock = this.lock; final AtomicInteger count = this.count; lock.lockInterruptibly(); try { /* * Note that count is used in wait guard even though it is * not protected by lock. This works because count can * only decrease at this point (all other puts are shut * out by lock), and we (or some other waiting put) are * signalled if it ever changes from * capacity. Similarly for all other uses of count in * other wait guards. */ try { while (count.get() == capacity) notFull.await(); } catch (InterruptedException ie) { notFull.signal(); // propagate to a non-interrupted thread throw ie; } list.addLast(message); c = count.getAndIncrement(); notEmpty.signal(); if (c + 1 < capacity) notFull.signal(); } finally { lock.unlock(); } } public void enqueueFirst(MessageDispatch message) throws InterruptedException{ if (closed.get() ||!running.get()){ return ; } // synchronized(mutex) { // if (list.size()>=this.capacity){ // try { // mutex.wait(1000); // } catch (InterruptedException e) { // } // } // list.addFirst(message); // mutex.notify(); // } if (message == null) throw new NullPointerException(); // Note: convention in all put/take/etc is to preset // local var holding count negative to indicate failure unless set. int c = -1; final ReentrantLock lock = this.lock; final AtomicInteger count = this.count; lock.lockInterruptibly(); try { /* * Note that count is used in wait guard even though it is * not protected by lock. This works because count can * only decrease at this point (all other puts are shut * out by lock), and we (or some other waiting put) are * signalled if it ever changes from * capacity. Similarly for all other uses of count in * other wait guards. */ try { while (count.get() == capacity) notFull.await(); } catch (InterruptedException ie) { notFull.signal(); // propagate to a non-interrupted thread throw ie; } list.addFirst(message); c = count.getAndIncrement(); notEmpty.signal(); if (c + 1 < capacity) notFull.signal(); } finally { lock.unlock(); } } public boolean isEmpty() { // synchronized(mutex) { // return list.isEmpty(); // } return count.get()==0; } /** * Used to get an enqueued message. * The amount of time this method blocks is based on the timeout value. * - if timeout==-1 then it blocks until a message is received. * - if timeout==0 then it it tries to not block at all, it returns a message if it is available * - if timeout>0 then it blocks up to timeout amount of time. * * Expired messages will consumed by this method. * * @throws JMSException * * @return null if we timeout or if the consumer is closed. * @throws InterruptedException */ public MessageDispatch dequeue(long timeout) throws InterruptedException { // synchronized (mutex) { // // Wait until the consumer is ready to deliver messages. // while(timeout != 0 && !closed && (list.isEmpty() || !running)) { // if (timeout == -1) { // mutex.wait(); // } else { // mutex.wait(timeout); // break; // } // } // if (closed || !running || list.isEmpty()) { // return null; // } // return list.removeFirst(); // } if (closed.get() ||!running.get()){ return null; } MessageDispatch x = null; int c = -1; long nanos = TimeUnit.MILLISECONDS.toNanos(timeout); final AtomicInteger count = this.count; final ReentrantLock lock = this.lock; lock.lockInterruptibly(); try { for (;;) { if (count.get() > 0) { x = list.poll(); c = count.getAndDecrement(); notFull.signal(); if (c > 1) notEmpty.signal(); break; } if (nanos <= 0) return null; try { nanos = notEmpty.awaitNanos(nanos); } catch (InterruptedException ie) { notEmpty.signal(); // propagate to a non-interrupted thread throw ie; } } } finally { lock.unlock(); } return x; } public MessageDispatch dequeueNoWait() { if (closed.get() ||!running.get()){ return null; } // synchronized (mutex) { // if (closed || !running || list.isEmpty()) { // return null; // } // return list.removeFirst(); // } final AtomicInteger count = this.count; if (count.get() == 0) return null; MessageDispatch x = null; int c = -1; final ReentrantLock lock = this.lock; lock.lock(); try { if (count.get() > 0) { x =list.poll(); c = count.getAndDecrement(); notFull.signal(); if (c > 1) notEmpty.signal(); } } finally { lock.unlock(); } return x; } public MessageDispatch peek() { if (closed.get() ||!running.get()){ return null; } // synchronized (mutex) { // if (closed || !running || list.isEmpty()) { // return null; // } // return list.getFirst(); // } final ReentrantLock lock = this.lock; lock.lock(); final AtomicInteger count = this.count; if (count.get() == 0) return null; try { return list.peek(); } finally { lock.unlock(); } } public void clear() { // synchronized(mutex) { // list.clear(); // } final ReentrantLock lock = this.lock; lock.lock(); try { list.clear(); if (count.getAndSet(0) == capacity) notFull.signalAll(); } finally { lock.unlock(); } } public boolean isClosed() { return closed.get(); } public int size() { // synchronized(mutex) { // return list.size(); // } return count.get(); } public int remainingCapacity() { return capacity - count.get(); } public List<MessageDispatch> removeAll() { // synchronized(mutex) { // ArrayList <MessageDispatch>rc = new ArrayList<MessageDispatch>(list); // list.clear(); // return rc; // } final ReentrantLock lock = this.lock; lock.lock(); try { ArrayList <MessageDispatch>rc = new ArrayList<MessageDispatch>(list); list.clear(); if (count.getAndSet(0) == capacity) notFull.signalAll(); return rc; } finally { lock.unlock(); } } public String toString() { // synchronized(mutex) { // return list.toString(); // } final ReentrantLock lock = this.lock; lock.lock(); try { return list.toString(); } finally { lock.unlock(); } } public void start() { // synchronized (mutex) { // running = true; // mutex.notifyAll(); // } final ReentrantLock lock = this.lock; lock.lock(); try { count.set(0); running.compareAndSet(false, true); } finally { lock.unlock(); } } public void stop() { // synchronized (mutex) { // running = false; // mutex.notifyAll(); // } final ReentrantLock lock = this.lock; lock.lock(); try { count.set(0); running.compareAndSet(true, false); } finally { lock.unlock(); } } public void close() { // synchronized (mutex) { // if (!closed) { // running = false; // closed = true; // } // mutex.notifyAll(); // } final ReentrantLock lock = this.lock; lock.lock(); try { count.set(0); running.compareAndSet(true, false); closed.compareAndSet(false, true); } finally { lock.unlock(); } } //public Object getMutex() { // return mutex; //} public boolean isRunning() { return running.get(); } public ReentrantLock getLock(){ return this.lock; } } I also write another MessageDispatchChannel using two lock ( Get Lock and Put lock) import java.util.AbstractQueue; import java.util.ArrayList; import java.util.Collection; import java.util.Iterator; import java.util.List; import java.util.NoSuchElementException; import java.util.concurrent.BlockingQueue; import java.util.concurrent.TimeUnit; import java.util.concurrent.atomic.AtomicBoolean; import java.util.concurrent.atomic.AtomicInteger; import java.util.concurrent.locks.Condition; import java.util.concurrent.locks.ReentrantLock; public class MesssageDispatchBlockingChannel<E> extends AbstractQueue<E> implements BlockingQueue<E>, java.io.Serializable { /* * A variant of the "two lock queue" algorithm. The putLock gates entry to * put (and offer), and has an associated condition for waiting puts. * Similarly for the takeLock. The "count" field that they both rely on is * maintained as an atomic to avoid needing to get both locks in most cases. * Also, to minimize need for puts to get takeLock and vice-versa, cascading * notifies are used. When a put notices that it has enabled at least one * take, it signals taker. That taker in turn signals others if more items * have been entered since the signal. And symmetrically for takes * signalling puts. Operations such as remove(Object) and iterators acquire * both locks. */ /** * */ private static final long serialVersionUID = 1330823692422658197L; /** * Linked list node class */ static class Node<E> { /** The item, volatile to ensure barrier separating write and read */ volatile E item; Node<E> next; Node(E x) { item = x; } } /** The capacity bound, or Integer.MAX_VALUE if none */ private final int capacity; /** Current number of elements */ private final AtomicInteger count = new AtomicInteger(0); /** Head of linked list */ private transient Node<E> head; /** Tail of linked list */ private transient Node<E> last; /** Lock held by take, poll, etc */ private final ReentrantLock takeLock = new ReentrantLock(); /** Wait queue for waiting takes */ private final Condition notEmpty = takeLock.newCondition(); /** Lock held by put, offer, etc */ private final ReentrantLock putLock = new ReentrantLock(); /** Wait queue for waiting puts */ private final Condition notFull = putLock.newCondition(); private AtomicBoolean closed = new AtomicBoolean(false); private AtomicBoolean running = new AtomicBoolean(false); public boolean enqueue(E o) throws InterruptedException { if (closed.get() || !running.get()) { return false; } return this.offer(o); } public boolean enqueueFirst(E o) throws InterruptedException { if (closed.get() || !running.get()) { return false; } if (o == null) throw new NullPointerException(); final AtomicInteger count = this.count; if (count.get() == capacity) return false; int c = -1; final ReentrantLock putLock = this.putLock; putLock.lock(); try { if (count.get() < capacity) { addFirst(o); c = count.getAndIncrement(); if (c + 1 < capacity) notFull.signal(); } } finally { putLock.unlock(); } if (c == 0) signalNotEmpty(); return c >= 0; } public boolean isEmpty() { final AtomicInteger count = this.count; return count.get() == 0; } public E dequeue(long timeout) throws InterruptedException { if (closed.get() || !running.get()) { return null; } return this.poll(timeout, TimeUnit.MILLISECONDS); } public E dequeueNoWait() { if (closed.get() || !running.get()) { return null; } return this.poll(); } public List<E> removeAll() { fullyLock(); try { int size = count.get(); ArrayList<E> rc = new ArrayList<E>(size); for (Node<E> p = head.next; p != null; p = p.next) { rc.add(p.item); } head.next = null; assert head.item == null; last = head; if (count.getAndSet(0) == capacity) notFull.signalAll(); return rc; } finally { fullyUnlock(); } } public void start() { fullyLock(); try { count.set(0); running.compareAndSet(false, true); } finally { fullyUnlock(); } } public void stop() { fullyLock(); try { count.set(0); running.compareAndSet(true, false); } finally { fullyUnlock(); } } public void close() { fullyLock(); try { count.set(0); running.compareAndSet(true, false); closed.compareAndSet(false, true); } finally { fullyUnlock(); } } public boolean isClosed() { return closed.get(); } public boolean isRunning() { return running.get(); } /** * Signal a waiting take. Called only from put/offer (which do not otherwise * ordinarily lock takeLock.) */ private void signalNotEmpty() { final ReentrantLock takeLock = this.takeLock; takeLock.lock(); try { notEmpty.signal(); } finally { takeLock.unlock(); } } /** * Signal a waiting put. Called only from take/poll. */ private void signalNotFull() { final ReentrantLock putLock = this.putLock; putLock.lock(); try { notFull.signal(); } finally { putLock.unlock(); } } /** * Create a node and link it at end of queue * * @param x * the item */ private void addFirst(E x) { Node<E> node = new Node<E>(x); node.next = head; head = node; } /** * Create a node and link it at end of queue * * @param x * the item */ private void insert(E x) { last = last.next = new Node<E>(x); } /** * Remove a node from head of queue, * * @return the node */ private E extract() { Node<E> first = head.next; head = first; E x = first.item; first.item = null; return x; } /** * Lock to prevent both puts and takes. */ protected void fullyLock() { putLock.lock(); takeLock.lock(); } /** * Unlock to allow both puts and takes. */ protected void fullyUnlock() { takeLock.unlock(); putLock.unlock(); } /** * Creates a <tt>LinkedBlockingQueue</tt> with a capacity of * [EMAIL PROTECTED] Integer#MAX_VALUE}. */ public MesssageDispatchBlockingChannel() { this(Integer.MAX_VALUE); } /** * Creates a <tt>LinkedBlockingQueue</tt> with the given (fixed) capacity. * * @param capacity * the capacity of this queue. * @throws IllegalArgumentException * if <tt>capacity</tt> is not greater than zero. */ public MesssageDispatchBlockingChannel(int capacity) { if (capacity <= 0) throw new IllegalArgumentException(); this.capacity = capacity; last = head = new Node<E>(null); } /** * Creates a <tt>LinkedBlockingQueue</tt> with a capacity of * [EMAIL PROTECTED] Integer#MAX_VALUE}, initially containing the elements of the * given collection, added in traversal order of the collection's iterator. * * @param c * the collection of elements to initially contain * @throws NullPointerException * if <tt>c</tt> or any element within it is <tt>null</tt> */ public MesssageDispatchBlockingChannel(Collection<? extends E> c) { this(Integer.MAX_VALUE); for (E e : c) add(e); } // this doc comment is overridden to remove the reference to collections // greater in size than Integer.MAX_VALUE /** * Returns the number of elements in this queue. * * @return the number of elements in this queue. */ public int size() { return count.get(); } // this doc comment is a modified copy of the inherited doc comment, // without the reference to unlimited queues. /** * Returns the number of elements that this queue can ideally (in the * absence of memory or resource constraints) accept without blocking. This * is always equal to the initial capacity of this queue less the current * <tt>size</tt> of this queue. * <p> * Note that you <em>cannot</em> always tell if an attempt to <tt>add</tt> * an element will succeed by inspecting <tt>remainingCapacity</tt> * because it may be the case that a waiting consumer is ready to * <tt>take</tt> an element out of an otherwise full queue. */ public int remainingCapacity() { return capacity - count.get(); } /** * Adds the specified element to the tail of this queue, waiting if * necessary for space to become available. * * @param o * the element to add * @throws InterruptedException * if interrupted while waiting. * @throws NullPointerException * if the specified element is <tt>null</tt>. */ public void put(E o) throws InterruptedException { if (o == null) throw new NullPointerException(); // Note: convention in all put/take/etc is to preset // local var holding count negative to indicate failure unless set. int c = -1; final ReentrantLock putLock = this.putLock; final AtomicInteger count = this.count; putLock.lockInterruptibly(); try { /* * Note that count is used in wait guard even though it is not * protected by lock. This works because count can only decrease at * this point (all other puts are shut out by lock), and we (or some * other waiting put) are signalled if it ever changes from * capacity. Similarly for all other uses of count in other wait * guards. */ try { while (count.get() == capacity) notFull.await(); } catch (InterruptedException ie) { notFull.signal(); // propagate to a non-interrupted thread throw ie; } insert(o); c = count.getAndIncrement(); if (c + 1 < capacity) notFull.signal(); } finally { putLock.unlock(); } if (c == 0) signalNotEmpty(); } /** * Inserts the specified element at the tail of this queue, waiting if * necessary up to the specified wait time for space to become available. * * @param o * the element to add * @param timeout * how long to wait before giving up, in units of <tt>unit</tt> * @param unit * a <tt>TimeUnit</tt> determining how to interpret the * <tt>timeout</tt> parameter * @return <tt>true</tt> if successful, or <tt>false</tt> if the * specified waiting time elapses before space is available. * @throws InterruptedException * if interrupted while waiting. * @throws NullPointerException * if the specified element is <tt>null</tt>. */ public boolean offer(E o, long timeout, TimeUnit unit) throws InterruptedException { if (o == null) throw new NullPointerException(); long nanos = unit.toNanos(timeout); int c = -1; final ReentrantLock putLock = this.putLock; final AtomicInteger count = this.count; putLock.lockInterruptibly(); try { for (;;) { if (count.get() < capacity) { insert(o); c = count.getAndIncrement(); if (c + 1 < capacity) notFull.signal(); break; } if (nanos <= 0) return false; try { nanos = notFull.awaitNanos(nanos); } catch (InterruptedException ie) { notFull.signal(); // propagate to a non-interrupted thread throw ie; } } } finally { putLock.unlock(); } if (c == 0) signalNotEmpty(); return true; } /** * Inserts the specified element at the tail of this queue if possible, * returning immediately if this queue is full. * * @param o * the element to add. * @return <tt>true</tt> if it was possible to add the element to this * queue, else <tt>false</tt> * @throws NullPointerException * if the specified element is <tt>null</tt> */ public boolean offer(E o) { if (o == null) throw new NullPointerException(); final AtomicInteger count = this.count; if (count.get() == capacity) return false; int c = -1; final ReentrantLock putLock = this.putLock; putLock.lock(); try { if (count.get() < capacity) { insert(o); c = count.getAndIncrement(); if (c + 1 < capacity) notFull.signal(); } } finally { putLock.unlock(); } if (c == 0) signalNotEmpty(); return c >= 0; } public E take() throws InterruptedException { E x; int c = -1; final AtomicInteger count = this.count; final ReentrantLock takeLock = this.takeLock; takeLock.lockInterruptibly(); try { try { while (count.get() == 0) notEmpty.await(); } catch (InterruptedException ie) { notEmpty.signal(); // propagate to a non-interrupted thread throw ie; } x = extract(); c = count.getAndDecrement(); if (c > 1) notEmpty.signal(); } finally { takeLock.unlock(); } if (c == capacity) signalNotFull(); return x; } public E poll(long timeout, TimeUnit unit) throws InterruptedException { E x = null; int c = -1; long nanos = unit.toNanos(timeout); final AtomicInteger count = this.count; final ReentrantLock takeLock = this.takeLock; takeLock.lockInterruptibly(); try { for (;;) { if (count.get() > 0) { x = extract(); c = count.getAndDecrement(); if (c > 1) notEmpty.signal(); break; } if (nanos <= 0) return null; try { nanos = notEmpty.awaitNanos(nanos); } catch (InterruptedException ie) { notEmpty.signal(); // propagate to a non-interrupted thread throw ie; } } } finally { takeLock.unlock(); } if (c == capacity) signalNotFull(); return x; } public E poll() { final AtomicInteger count = this.count; if (count.get() == 0) return null; E x = null; int c = -1; final ReentrantLock takeLock = this.takeLock; takeLock.lock(); try { if (count.get() > 0) { x = extract(); c = count.getAndDecrement(); if (c > 1) notEmpty.signal(); } } finally { takeLock.unlock(); } if (c == capacity) signalNotFull(); return x; } public E peek() { if (count.get() == 0) return null; final ReentrantLock takeLock = this.takeLock; takeLock.lock(); try { Node<E> first = head.next; if (first == null) return null; else return first.item; } finally { takeLock.unlock(); } } /** * Removes a single instance of the specified element from this queue, if it * is present. */ public boolean remove(Object o) { if (o == null) return false; boolean removed = false; fullyLock(); try { Node<E> trail = head; Node<E> p = head.next; while (p != null) { if (o.equals(p.item)) { removed = true; break; } trail = p; p = p.next; } if (removed) { p.item = null; trail.next = p.next; if (last == p) last = trail; if (count.getAndDecrement() == capacity) notFull.signalAll(); } } finally { fullyUnlock(); } return removed; } public Object[] toArray() { fullyLock(); try { int size = count.get(); Object[] a = new Object[size]; int k = 0; for (Node<E> p = head.next; p != null; p = p.next) a[k++] = p.item; return a; } finally { fullyUnlock(); } } public <T> T[] toArray(T[] a) { fullyLock(); try { int size = count.get(); if (a.length < size) a = (T[]) java.lang.reflect.Array.newInstance(a.getClass() .getComponentType(), size); int k = 0; for (Node p = head.next; p != null; p = p.next) a[k++] = (T) p.item; if (a.length > k) a[k] = null; return a; } finally { fullyUnlock(); } } public String toString() { fullyLock(); try { return super.toString(); } finally { fullyUnlock(); } } /** * Atomically removes all of the elements from this queue. The queue will be * empty after this call returns. */ public void clear() { fullyLock(); try { head.next = null; assert head.item == null; last = head; if (count.getAndSet(0) == capacity) notFull.signalAll(); } finally { fullyUnlock(); } } public int drainTo(Collection<? super E> c) { if (c == null) throw new NullPointerException(); if (c == this) throw new IllegalArgumentException(); Node first; fullyLock(); try { first = head.next; head.next = null; assert head.item == null; last = head; if (count.getAndSet(0) == capacity) notFull.signalAll(); } finally { fullyUnlock(); } // Transfer the elements outside of locks int n = 0; for (Node<E> p = first; p != null; p = p.next) { c.add(p.item); p.item = null; ++n; } return n; } public int drainTo(Collection<? super E> c, int maxElements) { if (c == null) throw new NullPointerException(); if (c == this) throw new IllegalArgumentException(); fullyLock(); try { int n = 0; Node<E> p = head.next; while (p != null && n < maxElements) { c.add(p.item); p.item = null; p = p.next; ++n; } if (n != 0) { head.next = p; assert head.item == null; if (p == null) last = head; if (count.getAndAdd(-n) == capacity) notFull.signalAll(); } return n; } finally { fullyUnlock(); } } /** * Returns an iterator over the elements in this queue in proper sequence. * The returned <tt>Iterator</tt> is a "weakly consistent" iterator that * will never throw [EMAIL PROTECTED] java.util.ConcurrentModificationException}, and * guarantees to traverse elements as they existed upon construction of the * iterator, and may (but is not guaranteed to) reflect any modifications * subsequent to construction. * * @return an iterator over the elements in this queue in proper sequence. */ public Iterator<E> iterator() { return new Itr(); } private class Itr implements Iterator<E> { /* * Basic weak-consistent iterator. At all times hold the next item to * hand out so that if hasNext() reports true, we will still have it to * return even if lost race with a take etc. */ private Node<E> current; private Node<E> lastRet; private E currentElement; Itr() { final ReentrantLock putLock = MesssageDispatchBlockingChannel.this.putLock; final ReentrantLock takeLock = MesssageDispatchBlockingChannel.this.takeLock; putLock.lock(); takeLock.lock(); try { current = head.next; if (current != null) currentElement = current.item; } finally { takeLock.unlock(); putLock.unlock(); } } public boolean hasNext() { return current != null; } public E next() { final ReentrantLock putLock = MesssageDispatchBlockingChannel.this.putLock; final ReentrantLock takeLock = MesssageDispatchBlockingChannel.this.takeLock; putLock.lock(); takeLock.lock(); try { if (current == null) throw new NoSuchElementException(); E x = currentElement; lastRet = current; current = current.next; if (current != null) currentElement = current.item; return x; } finally { takeLock.unlock(); putLock.unlock(); } } public void remove() { if (lastRet == null) throw new IllegalStateException(); final ReentrantLock putLock = MesssageDispatchBlockingChannel.this.putLock; final ReentrantLock takeLock = MesssageDispatchBlockingChannel.this.takeLock; putLock.lock(); takeLock.lock(); try { Node<E> node = lastRet; lastRet = null; Node<E> trail = head; Node<E> p = head.next; while (p != null && p != node) { trail = p; p = p.next; } if (p == node) { p.item = null; trail.next = p.next; if (last == p) last = trail; int c = count.getAndDecrement(); if (c == capacity) notFull.signalAll(); } } finally { takeLock.unlock(); putLock.unlock(); } } } /** * Save the state to a stream (that is, serialize it). * * @serialData The capacity is emitted (int), followed by all of its * elements (each an <tt>Object</tt>) in the proper order, * followed by a null * @param s * the stream */ private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException { fullyLock(); try { // Write out any hidden stuff, plus capacity s.defaultWriteObject(); // Write out all elements in the proper order. for (Node<E> p = head.next; p != null; p = p.next) s.writeObject(p.item); // Use trailing null as sentinel s.writeObject(null); } finally { fullyUnlock(); } } /** * Reconstitute this queue instance from a stream (that is, deserialize it). * * @param s * the stream */ private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException { // Read in capacity, and any hidden stuff s.defaultReadObject(); count.set(0); last = head = new Node<E>(null); // Read in all elements and place in queue for (;;) { E item = (E) s.readObject(); if (item == null) break; add(item); } } } -- View this message in context: http://www.nabble.com/No-Durable-topic-consumer-OutofMemory-solution-tf4155074s2354.html#a11822019 Sent from the ActiveMQ - Dev mailing list archive at Nabble.com.