I changed to code and justs keeps running.  The start date is 5 minutes ago
and the cron  is set to run every 5 mins.  Ever second the dag is
triggered. Wow what am I missing in the docs?  I have a dag that runs a
python script that outputs to a log file 1,2,3 in order for testing an d
expecting this to happen every 5 mins.  Yet its not.

All I see in the below once a sec
1
2
3
1
2
3
1
2
3
on and on one line a second or two.



default_args = {
    'owner': 'airflow',
    'depends_on_past': False,
    "start_date":  datetime.now()-timedelta(minutes=5),
    'email': ['[email protected]'],
    'email_on_failure': True,
    'email_on_retry': True,
    'retries': 1,
    'retry_delay': timedelta(minutes=5),
    # 'queue': 'bash_queue',
    # 'pool': 'backfill',
    # 'priority_weight': 10,
    # 'end_date': datetime(2016, 1, 1),
}

# */5 * * * *
dag = DAG('first_test', schedule_interval="*/5 * * * *",
default_args=default_args)


node_0 = PythonOperator(
    task_id='isnewdata',
    provide_context=False,
    python_callable=checkfornewdata,
    dag=dag)


node_0_1 = PythonOperator(
    task_id='fetchdata',
    provide_context=False,
    python_callable=fetchdata,
    dag=dag)

node_0_1_2 = PythonOperator(
    task_id='uploadtoes',
    provide_context=False,
    python_callable= uploadtoes,
    dag=dag)


node_0_1.set_upstream(node_0)
node_0_1_2.set_upstream(node_0_1)







On Wed, Aug 24, 2016 at 11:04 PM, Laura Lorenz <[email protected]>
wrote:

> I don't think this necessarily answers your question, but one thing I
> noticed is that you are using a dynamic start_date, when you should be
> using a fixed one. From the FAQs
> <https://pythonhosted.org/airflow/faq.html#what-s-the-deal-with-start-date
> >:
>
> We recommend against using dynamic values as start_date, especially
> > datetime.now() as it can be quite confusing. The task is triggered once
> the
> > period closes, and in theory an @hourly DAG would never get to an hour
> > after now as now() moves along.
>
>
> More to the point, what specifically do you mean by "always running" and
> "fires every cycle"? For example is what you are seeing a new task instance
> with a new execution date every run of the scheduler i.e. from the Browse >
> Task Instances UI?
>
> On Tue, Aug 23, 2016 at 5:27 PM, David Montgomery <
> [email protected]
> > wrote:
>
> > even @hourly is not working.  Fires every cycle. wow
> >
> > On Wed, Aug 24, 2016 at 5:09 AM, David Montgomery <
> > [email protected]
> > > wrote:
> >
> > > I updated the dag.  In thje UI I see 0 * * * * in the schedule field
> > >
> > >
> > >
> > > default_args = {
> > >     'owner': 'airflow',
> > >     'depends_on_past': False,
> > >     "start_date": datetime.now(),
> > >     'email': ['[email protected]'],
> > >     'email_on_failure': True,
> > >     'email_on_retry': True,
> > >     'retries': 1,
> > >     'retry_delay': timedelta(minutes=5)
> > > }
> > >
> > >
> > >
> > > dag = DAG('first_test', schedule_interval="0 * * * *",
> > > default_args=default_args)
> > >
> > > node_0 = PythonOperator(
> > >     task_id='isnewdata',
> > >     provide_context=False,
> > >     python_callable=checkfornewdata,
> > >     dag=dag)
> > >
> > >
> > > node_0_1 = PythonOperator(
> > >     task_id='fetchdata',
> > >     provide_context=False,
> > >     python_callable=fetchdata,
> > >     dag=dag)
> > >
> > > node_0_1_2 = PythonOperator(
> > >     task_id='uploadtoes',
> > >     provide_context=False,
> > >     python_callable= uploadtoes,
> > >     dag=dag)
> > >
> > >
> >
>

Reply via email to