[ https://issues.apache.org/jira/browse/APEXMALHAR-2085?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=15351836#comment-15351836 ]
ASF GitHub Bot commented on APEXMALHAR-2085: -------------------------------------------- Github user chinmaykolhatkar commented on a diff in the pull request: https://github.com/apache/apex-malhar/pull/319#discussion_r68658247 --- Diff: library/src/main/java/org/apache/apex/malhar/lib/window/impl/AbstractWindowedOperator.java --- @@ -0,0 +1,490 @@ +/** + * Licensed to the Apache Software Foundation (ASF) under one + * or more contributor license agreements. See the NOTICE file + * distributed with this work for additional information + * regarding copyright ownership. The ASF licenses this file + * to you under the Apache License, Version 2.0 (the + * "License"); you may not use this file except in compliance + * with the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, + * software distributed under the License is distributed on an + * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY + * KIND, either express or implied. See the License for the + * specific language governing permissions and limitations + * under the License. + */ +package org.apache.apex.malhar.lib.window.impl; + +import java.util.ArrayList; +import java.util.Iterator; +import java.util.List; +import java.util.Map; + +import javax.validation.ValidationException; + +import org.joda.time.Duration; +import org.slf4j.Logger; +import org.slf4j.LoggerFactory; + +import org.apache.apex.malhar.lib.window.Accumulation; +import org.apache.apex.malhar.lib.window.ControlTuple; +import org.apache.apex.malhar.lib.window.TriggerOption; +import org.apache.apex.malhar.lib.window.Tuple; +import org.apache.apex.malhar.lib.window.Window; +import org.apache.apex.malhar.lib.window.WindowOption; +import org.apache.apex.malhar.lib.window.WindowState; +import org.apache.apex.malhar.lib.window.WindowedOperator; +import org.apache.apex.malhar.lib.window.WindowedStorage; +import org.apache.hadoop.classification.InterfaceStability; + +import com.google.common.base.Function; + +import com.datatorrent.api.Context; +import com.datatorrent.api.DefaultInputPort; +import com.datatorrent.api.DefaultOutputPort; +import com.datatorrent.api.annotation.InputPortFieldAnnotation; +import com.datatorrent.common.util.BaseOperator; + +/** + * This is the abstract windowed operator class that implements most of the windowing, triggering, and accumulating + * concepts. The subclass of this abstract class is supposed to provide the implementation of how the accumulated + * values are stored in the storage. + * + * @param <InputT> The type of the input tuple + * @param <OutputT> The type of the output tuple + * @param <DataStorageT> The type of the data storage + * @param <AccumulationT> The type of the accumulation + */ +@InterfaceStability.Evolving +public abstract class AbstractWindowedOperator<InputT, OutputT, DataStorageT extends WindowedStorage, AccumulationT extends Accumulation> + extends BaseOperator implements WindowedOperator<InputT> +{ + + protected WindowOption windowOption; + protected TriggerOption triggerOption; + protected long allowedLatenessMillis = -1; + protected WindowedStorage<WindowState> windowStateMap; + + private Function<InputT, Long> timestampExtractor; + + private long currentWatermark; + private boolean triggerAtWatermark; + private long earlyTriggerCount; + private long earlyTriggerMillis; + private long lateTriggerCount; + private long lateTriggerMillis; + private long currentDerivedTimestamp = -1; + private long windowWidthMillis; + protected DataStorageT dataStorage; + protected DataStorageT retractionStorage; + protected AccumulationT accumulation; + + private static final transient Logger LOG = LoggerFactory.getLogger(AbstractWindowedOperator.class); + + public final transient DefaultInputPort<Tuple<InputT>> input = new DefaultInputPort<Tuple<InputT>>() + { + @Override + public void process(Tuple<InputT> tuple) + { + processTuple(tuple); + } + }; + + // TODO: This port should be removed when Apex Core has native support for custom control tuples + @InputPortFieldAnnotation(optional = true) + public final transient DefaultInputPort<ControlTuple> controlInput = new DefaultInputPort<ControlTuple>() + { + @Override + public void process(ControlTuple tuple) + { + if (tuple instanceof ControlTuple.Watermark) { + processWatermark((ControlTuple.Watermark)tuple); + } + } + }; + + + // TODO: multiple input ports for join operations + + public final transient DefaultOutputPort<Tuple<OutputT>> output = new DefaultOutputPort<>(); + + // TODO: This port should be removed when Apex Core has native support for custom control tuples + public final transient DefaultOutputPort<ControlTuple> controlOutput = new DefaultOutputPort<>(); + + /** + * Process the incoming data tuple + * + * @param tuple + */ + public void processTuple(Tuple<InputT> tuple) + { + long timestamp = extractTimestamp(tuple); + if (isTooLate(timestamp)) { + dropTuple(tuple); + } else { + Tuple.WindowedTuple<InputT> windowedTuple = getWindowedValue(tuple); + // do the accumulation + accumulateTuple(windowedTuple); + + for (Window window : windowedTuple.getWindows()) { + WindowState windowState = windowStateMap.get(window); + windowState.tupleCount++; + // process any count based triggers + if (windowState.watermarkArrivalTime == -1) { + // watermark has not arrived yet, check for early count based trigger + if (earlyTriggerCount > 0 && (windowState.tupleCount % earlyTriggerCount) == 0) { + fireTrigger(window, windowState); + } + } else { + // watermark has arrived, check for late count based trigger + if (lateTriggerCount > 0 && (windowState.tupleCount % lateTriggerCount) == 0) { + fireTrigger(window, windowState); + } + } + } + } + } + + @Override + public void setWindowOption(WindowOption windowOption) + { + this.windowOption = windowOption; + if (this.windowOption instanceof WindowOption.GlobalWindow) { + windowStateMap.put(Window.GLOBAL_WINDOW, new WindowState()); + } + } + + @Override + public void setTriggerOption(TriggerOption triggerOption) + { + this.triggerOption = triggerOption; + for (TriggerOption.Trigger trigger : triggerOption.getTriggerList()) { + switch (trigger.getWatermarkOpt()) { + case ON_TIME: + triggerAtWatermark = true; + break; + case EARLY: + if (trigger instanceof TriggerOption.TimeTrigger) { + earlyTriggerMillis = ((TriggerOption.TimeTrigger)trigger).getDuration().getMillis(); + } else if (trigger instanceof TriggerOption.CountTrigger) { + earlyTriggerCount = ((TriggerOption.CountTrigger)trigger).getCount(); + } + break; + case LATE: + if (trigger instanceof TriggerOption.TimeTrigger) { + lateTriggerMillis = ((TriggerOption.TimeTrigger)trigger).getDuration().getMillis(); + } else if (trigger instanceof TriggerOption.CountTrigger) { + lateTriggerCount = ((TriggerOption.CountTrigger)trigger).getCount(); + } + break; + default: + throw new RuntimeException("Unexpected watermark option: " + trigger.getWatermarkOpt()); + } + } + } + + @Override + public void setAllowedLateness(Duration allowedLateness) + { + this.allowedLatenessMillis = allowedLateness.getMillis(); + } + + /** + * This method sets the storage for the data for each window + * + * @param storageAgent + */ + public void setDataStorage(DataStorageT storageAgent) + { + this.dataStorage = storageAgent; + } + + /** + * This method sets the storage for the retraction data for each window. Only used when the accumulation mode is ACCUMULATING_AND_RETRACTING + * + * @param storageAgent + */ + public void setRetractionStorage(DataStorageT storageAgent) + { + this.retractionStorage = storageAgent; + } + + /** + * Sets the accumulation, which basically tells the WindowedOperator what to do if a new tuple comes in and what + * to put in the pane when a trigger is fired + * + * @param accumulation + */ + public void setAccumulation(AccumulationT accumulation) + { + this.accumulation = accumulation; + } + + @Override + public void setWindowStateStorage(WindowedStorage<WindowState> storageAgent) + { + this.windowStateMap = storageAgent; + } + + @Override + public void setTimestampExtractor(Function<InputT, Long> timestampExtractor) + { + this.timestampExtractor = timestampExtractor; + } + + public void validate() throws ValidationException + { + if (accumulation == null) { + throw new ValidationException("Accumulation must be set"); + } + if (dataStorage == null) { + throw new ValidationException("Data storage must be set"); + } + if (windowStateMap == null) { + throw new ValidationException("Window state storage must be set"); + } + if (triggerOption != null) { + if (triggerOption.isFiringOnlyUpdatedPanes()) { + if (retractionStorage == null) { + throw new ValidationException("A retraction storage is required for firingOnlyUpdatedPanes option"); + } + if (triggerOption.getAccumulationMode() == TriggerOption.AccumulationMode.DISCARDING) { + throw new ValidationException("DISCARDING accumulation mode is not valid for firingOnlyUpdatedPanes option"); + } + } + if (triggerOption.getAccumulationMode() == TriggerOption.AccumulationMode.ACCUMULATING_AND_RETRACTING && + retractionStorage == null) { + throw new ValidationException("A retraction storage is required for ACCUMULATING_AND_RETRACTING accumulation mode"); + } + } + } + + @Override + public Tuple.WindowedTuple<InputT> getWindowedValue(Tuple<InputT> input) + { + Tuple.WindowedTuple<InputT> windowedTuple = new Tuple.WindowedTuple<>(); + windowedTuple.setValue(input.getValue()); + windowedTuple.setTimestamp(extractTimestamp(input)); + assignWindows(windowedTuple.getWindows(), input); + return windowedTuple; + } + + private long extractTimestamp(Tuple<InputT> tuple) + { + if (timestampExtractor == null) { + if (tuple instanceof Tuple.TimestampedTuple) { + return ((Tuple.TimestampedTuple)tuple).getTimestamp(); + } else { + return 0; + } + } else { + return timestampExtractor.apply(tuple.getValue()); + } + } + + private void assignWindows(List<Window> windows, Tuple<InputT> inputTuple) + { + if (windowOption instanceof WindowOption.GlobalWindow) { + windows.add(Window.GLOBAL_WINDOW); + } else { + long timestamp = extractTimestamp(inputTuple); + if (windowOption instanceof WindowOption.TimeWindows) { + + for (Window.TimeWindow window : getTimeWindowsForTimestamp(timestamp)) { + if (!windowStateMap.containsWindow(window)) { + windowStateMap.put(window, new WindowState()); + } + windows.add(window); + } + } else if (windowOption instanceof WindowOption.SessionWindows) { + assignSessionWindows(windows, timestamp, inputTuple); + } + } + } + + protected void assignSessionWindows(List<Window> windows, long timestamp, Tuple<InputT> inputTuple) + { + throw new UnsupportedOperationException(); + } + + /** + * Returns the list of windows TimeWindows for the given timestamp. + * If we are doing sliding windows, this will return multiple windows. Otherwise, only one window will be returned. + * Note that this method does not apply to SessionWindows. + * + * @param timestamp + * @return + */ + private List<Window.TimeWindow> getTimeWindowsForTimestamp(long timestamp) + { + List<Window.TimeWindow> windows = new ArrayList<>(); + if (windowOption instanceof WindowOption.TimeWindows) { + long durationMillis = ((WindowOption.TimeWindows)windowOption).getDuration().getMillis(); + long beginTimestamp = timestamp - timestamp % durationMillis; + windows.add(new Window.TimeWindow(beginTimestamp, durationMillis)); + if (windowOption instanceof WindowOption.SlidingTimeWindows) { + long slideBy = ((WindowOption.SlidingTimeWindows)windowOption).getSlideByDuration().getMillis(); + // add the sliding windows front and back + // Note: this messes up the order of the window and we might want to revisit this if the order of the windows + // matter + for (long slideBeginTimestamp = beginTimestamp - slideBy; + slideBeginTimestamp <= timestamp && timestamp < slideBeginTimestamp + durationMillis; + slideBeginTimestamp -= slideBy) { + windows.add(new Window.TimeWindow(slideBeginTimestamp, durationMillis)); + } + for (long slideBeginTimestamp = beginTimestamp + slideBy; + slideBeginTimestamp <= timestamp && timestamp < slideBeginTimestamp + durationMillis; + slideBeginTimestamp += slideBy) { + windows.add(new Window.TimeWindow(slideBeginTimestamp, durationMillis)); + } + } + } else { + throw new IllegalStateException("Unexpected WindowOption"); + } + return windows; + } + + @Override + public boolean isTooLate(long timestamp) + { + return allowedLatenessMillis < 0 ? false : (timestamp < currentWatermark - allowedLatenessMillis); + } + + @Override + public void dropTuple(Tuple<InputT> input) + { + // do nothing + LOG.debug("Dropping late tuple {}", input); + } + + + @Override + public void processWatermark(ControlTuple.Watermark watermark) + { + currentWatermark = watermark.getTimestamp(); + long horizon = currentWatermark - allowedLatenessMillis; + if (allowedLatenessMillis >= 0) { + // purge window that are too late to accept any more input + dataStorage.removeUpTo(horizon); --- End diff -- Before removing from storage, should we check whether triggers are fired and data is send to downstream for window that is too late? > Implement Windowed Operators > ---------------------------- > > Key: APEXMALHAR-2085 > URL: https://issues.apache.org/jira/browse/APEXMALHAR-2085 > Project: Apache Apex Malhar > Issue Type: New Feature > Reporter: Siyuan Hua > Assignee: David Yan > > As per our recent several discussions in the community. A group of Windowed > Operators that delivers the window semantic follows the google Data Flow > model(https://cloud.google.com/dataflow/) is very important. > The operators should be designed and implemented in a way for > High-level API > Beam translation > Easy to use with other popular operator > {panel:title=Operator Hierarchy} > Hierarchy of the operators, > The windowed operators should cover all possible transformations that require > window, and batch processing is also considered as special window called > global window > {code} > +-------------------+ > +---------> | WindowedOperator | <--------+ > | +--------+----------+ | > | ^ ^--------------------------------+ > | | | | > | | | | > +------+--------+ +------+------+ +-------+-----+ +------+-----+ > |CombineOperator| |GroupOperator| |KeyedOperator| |JoinOperator| > +---------------+ +-------------+ +------+------+ +-----+------+ > +---------^ ^ ^ > | | | > +--------+---+ +-----+----+ +----+----+ > |KeyedCombine| |KeyedGroup| | CoGroup | > +------------+ +----------+ +---------+ > {code} > Combine operation includes all operations that combine all tuples in one > window into one or small number of tuples, Group operation group all tuples > in one window, Join and CoGroup are used to join and group tuples from > different inputs. > {panel} > {panel:title=Components} > * Window Component > It includes configuration, window state that should be checkpointed, etc. It > should support NonMergibleWindow(fixed or slide) MergibleWindow(Session) > * Trigger > It should support early trigger, late trigger with customizable trigger > behaviour > * Other related components: > ** Watermark generator, can be plugged into input source to generate watermark > ** Tuple schema support: > It should handle either predefined tuple type or give a declarative API to > describe the user defined tuple class > {panel} > Most component API should be reused in High-Level API > This is the umbrella ticket, separate tickets would be created for different > components and operators respectively -- This message was sent by Atlassian JIRA (v6.3.4#6332)