[ 
https://issues.apache.org/jira/browse/APEXMALHAR-2260?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=16204844#comment-16204844
 ] 

Ananth commented on APEXMALHAR-2260:
------------------------------------

Integration with xgboost python package gives the following readings

The xgBoost ensemble of trees was generated for four depths ( and this resulted 
in varying number of trees ). The readings are given for all four of these 
modelling configurations

- 2012 Macbook Pro (2.6 GHz Intel Core i7 with 16GB RAM), No GPU was enabled 
for either modelling or scoring
- The model was to perform iris data set recognition
- The source code for the modelling and the binary version of the model can be 
located in the resources folder of the git project ( link in the second comment 
)
- Readings in microseconds




Result 
"github.ananthc.sampleapps.apex.xgboost.XGBoostJepBenchMarkDepth3.testXGBoostPredictIrisDepth3
 ( *60 trees* )":
  *475.027 ±(99.9%) 5.441 us/op [Average]*
  (min, avg, max) = (428.774, 475.027, 567.648), stdev = 23.037
  CI (99.9%): [469.586, 480.468] (assumes normal distribution)


# Run complete. Total time: 00:08:28

Benchmark                                               Mode  Cnt    Score   
Error  Units
XGBoostJepBenchMarkDepth3.testXGBoostPredictIrisDepth3  avgt  200  475.027 ± 
5.441  us/op





Result 
"github.ananthc.sampleapps.apex.xgboost.XGBoostJepBenchMarkDepth9.testXGBoostPredictIrisDepth9
 ( *120 trees* )":
  *479.907 ±(99.9%) 6.342 us/op [Average]*
  (min, avg, max) = (427.637, 479.907, 576.946), stdev = 26.852
  CI (99.9%): [473.565, 486.249] (assumes normal distribution)


# Run complete. Total time: 00:08:31

Benchmark                                               Mode  Cnt    Score   
Error  Units
XGBoostJepBenchMarkDepth9.testXGBoostPredictIrisDepth9  avgt  200  479.907 ± 
6.342  us/op






Result 
"github.ananthc.sampleapps.apex.xgboost.XGBoostJepBenchMarkDepth27.testXGBoostPredictIrisDepth27
 ( *300 trees* )":
  *524.516 ±(99.9%) 13.392 us/op [Average]*
  (min, avg, max) = (423.894, 524.516, 838.232), stdev = 56.701
  CI (99.9%): [511.124, 537.908] (assumes normal distribution)


# Run complete. Total time: 00:08:30

Benchmark                                                 Mode  Cnt    Score    
Error  Units
XGBoostJepBenchMarkDepth27.testXGBoostPredictIrisDepth27  avgt  200  524.516 ± 
13.392  us/op


Result 
"github.ananthc.sampleapps.apex.xgboost.XGBoostJepBenchMarkDepth125.testXGBoostPredictIrisDepth125
 ( *900 trees* )":
  *519.460 ±(99.9%) 10.647 us/op [Average]*
  (min, avg, max) = (458.625, 519.460, 693.956), stdev = 45.082
  CI (99.9%): [508.812, 530.107] (assumes normal distribution)


# Run complete. Total time: 00:08:35

Benchmark                                                   Mode  Cnt    Score  
  Error  Units
XGBoostJepBenchMarkDepth125.testXGBoostPredictIrisDepth125  avgt  200  519.460 
± 10.647  us/op




> Python execution for operator logic 
> ------------------------------------
>
>                 Key: APEXMALHAR-2260
>                 URL: https://issues.apache.org/jira/browse/APEXMALHAR-2260
>             Project: Apache Apex Malhar
>          Issue Type: New Feature
>            Reporter: Thomas Weise
>            Assignee: Ananth
>              Labels: roadmap
>
> Support execution of Python code in an operator. 
> https://lists.apache.org/thread.html/9837b1dee8f909ed400c6030ce5c6a94a12f43183718019dd0bfd228@%3Cdev.apex.apache.org%3E



--
This message was sent by Atlassian JIRA
(v6.4.14#64029)

Reply via email to