[ https://issues.apache.org/jira/browse/APEXMALHAR-2260?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=16204844#comment-16204844 ]
Ananth commented on APEXMALHAR-2260: ------------------------------------ Integration with xgboost python package gives the following readings The xgBoost ensemble of trees was generated for four depths ( and this resulted in varying number of trees ). The readings are given for all four of these modelling configurations - 2012 Macbook Pro (2.6 GHz Intel Core i7 with 16GB RAM), No GPU was enabled for either modelling or scoring - The model was to perform iris data set recognition - The source code for the modelling and the binary version of the model can be located in the resources folder of the git project ( link in the second comment ) - Readings in microseconds Result "github.ananthc.sampleapps.apex.xgboost.XGBoostJepBenchMarkDepth3.testXGBoostPredictIrisDepth3 ( *60 trees* )": *475.027 ±(99.9%) 5.441 us/op [Average]* (min, avg, max) = (428.774, 475.027, 567.648), stdev = 23.037 CI (99.9%): [469.586, 480.468] (assumes normal distribution) # Run complete. Total time: 00:08:28 Benchmark Mode Cnt Score Error Units XGBoostJepBenchMarkDepth3.testXGBoostPredictIrisDepth3 avgt 200 475.027 ± 5.441 us/op Result "github.ananthc.sampleapps.apex.xgboost.XGBoostJepBenchMarkDepth9.testXGBoostPredictIrisDepth9 ( *120 trees* )": *479.907 ±(99.9%) 6.342 us/op [Average]* (min, avg, max) = (427.637, 479.907, 576.946), stdev = 26.852 CI (99.9%): [473.565, 486.249] (assumes normal distribution) # Run complete. Total time: 00:08:31 Benchmark Mode Cnt Score Error Units XGBoostJepBenchMarkDepth9.testXGBoostPredictIrisDepth9 avgt 200 479.907 ± 6.342 us/op Result "github.ananthc.sampleapps.apex.xgboost.XGBoostJepBenchMarkDepth27.testXGBoostPredictIrisDepth27 ( *300 trees* )": *524.516 ±(99.9%) 13.392 us/op [Average]* (min, avg, max) = (423.894, 524.516, 838.232), stdev = 56.701 CI (99.9%): [511.124, 537.908] (assumes normal distribution) # Run complete. Total time: 00:08:30 Benchmark Mode Cnt Score Error Units XGBoostJepBenchMarkDepth27.testXGBoostPredictIrisDepth27 avgt 200 524.516 ± 13.392 us/op Result "github.ananthc.sampleapps.apex.xgboost.XGBoostJepBenchMarkDepth125.testXGBoostPredictIrisDepth125 ( *900 trees* )": *519.460 ±(99.9%) 10.647 us/op [Average]* (min, avg, max) = (458.625, 519.460, 693.956), stdev = 45.082 CI (99.9%): [508.812, 530.107] (assumes normal distribution) # Run complete. Total time: 00:08:35 Benchmark Mode Cnt Score Error Units XGBoostJepBenchMarkDepth125.testXGBoostPredictIrisDepth125 avgt 200 519.460 ± 10.647 us/op > Python execution for operator logic > ------------------------------------ > > Key: APEXMALHAR-2260 > URL: https://issues.apache.org/jira/browse/APEXMALHAR-2260 > Project: Apache Apex Malhar > Issue Type: New Feature > Reporter: Thomas Weise > Assignee: Ananth > Labels: roadmap > > Support execution of Python code in an operator. > https://lists.apache.org/thread.html/9837b1dee8f909ed400c6030ce5c6a94a12f43183718019dd0bfd228@%3Cdev.apex.apache.org%3E -- This message was sent by Atlassian JIRA (v6.4.14#64029)