DB Tsai created ARROW-1873:
------------------------------

             Summary: Segmentation fault when loading total 2GB of parquet files
                 Key: ARROW-1873
                 URL: https://issues.apache.org/jira/browse/ARROW-1873
             Project: Apache Arrow
          Issue Type: Bug
            Reporter: DB Tsai


We are trying to load 100 parquet files, and each of them is around 20MB. 
Before we port [ARROW-1830] into our pyarrow distribution, we use {{glob}} to 
list all the files, and then load them as pandas dataframe through pyarrow. 

The schema of the parquet files is like 
{code:java}
root
 |-- dateint: integer (nullable = true)
 |-- profileid: long (nullable = true)
 |-- time: long (nullable = true)
 |-- label: double (nullable = true)
 |-- weight: double (nullable = true)
 |-- features: array (nullable = true)
 |    |-- element: double (containsNull = true)
{code}

If we only load couple of them, it works without any issue. However, then 
loading 100 of them, we got segmentation fault as the following. FYI, if we 
flatten {{features: array[double]}} into top level, the file sizes are the 
same, and work fine too. 

Is there anything we can try to eliminate this issue? Thanks.

{code}
>>> import glob
>>> files = glob.glob("/home/dbt/data/*")
>>> data = pq.ParquetDataset(files).read().to_pandas()
[New Thread 0x7fffe8f84700 (LWP 23769)]
[New Thread 0x7fffe3b93700 (LWP 23770)]
[New Thread 0x7fffe3392700 (LWP 23771)]
[New Thread 0x7fffe2b91700 (LWP 23772)]
[Thread 0x7fffe2b91700 (LWP 23772) exited]
[Thread 0x7fffe3b93700 (LWP 23770) exited]

Thread 4 "python" received signal SIGSEGV, Segmentation fault.
[Switching to Thread 0x7fffe3392700 (LWP 23771)]
0x00007ffff270fc94 in arrow::Status 
arrow::VisitTypeInline<arrow::py::ArrowDeserializer>(arrow::DataType const&, 
arrow::py::ArrowDeserializer*) ()
   from 
/home/dbt/miniconda3/lib/python3.6/site-packages/pyarrow/../../../libarrow_python.so.0
(gdb) backtrace
#0  0x00007ffff270fc94 in arrow::Status 
arrow::VisitTypeInline<arrow::py::ArrowDeserializer>(arrow::DataType const&, 
arrow::py::ArrowDeserializer*) ()
   from 
/home/dbt/miniconda3/lib/python3.6/site-packages/pyarrow/../../../libarrow_python.so.0
#1  0x00007ffff2700b5a in 
arrow::py::ConvertColumnToPandas(arrow::py::PandasOptions, 
std::shared_ptr<arrow::Column> const&, _object*, _object**) ()
   from 
/home/dbt/miniconda3/lib/python3.6/site-packages/pyarrow/../../../libarrow_python.so.0
#2  0x00007ffff2714985 in arrow::Status 
arrow::py::ConvertListsLike<arrow::DoubleType>(arrow::py::PandasOptions, 
std::shared_ptr<arrow::Column> const&, _object**) () from 
/home/dbt/miniconda3/lib/python3.6/site-packages/pyarrow/../../../libarrow_python.so.0
#3  0x00007ffff2716b92 in 
arrow::py::ObjectBlock::Write(std::shared_ptr<arrow::Column> const&, long, 
long) ()
   from 
/home/dbt/miniconda3/lib/python3.6/site-packages/pyarrow/../../../libarrow_python.so.0
#4  0x00007ffff270a489 in 
arrow::py::DataFrameBlockCreator::WriteTableToBlocks(int)::{lambda(int)#1}::operator()(int)
 const ()
   from 
/home/dbt/miniconda3/lib/python3.6/site-packages/pyarrow/../../../libarrow_python.so.0
#5  0x00007ffff270a67c in std::thread::_Impl<std::_Bind_simple<arrow::Status 
arrow::ParallelFor<arrow::py::DataFrameBlockCreator::WriteTableToBlocks(int)::{lambda(int)#1}&>(int,
 int, 
arrow::py::DataFrameBlockCreator::WriteTableToBlocks(int)::{lambda(int)#1}&)::{lambda()#1}
 ()> >::_M_run() ()
   from 
/home/dbt/miniconda3/lib/python3.6/site-packages/pyarrow/../../../libarrow_python.so.0
#6  0x00007ffff1e30c5c in std::execute_native_thread_routine_compat 
(__p=<optimized out>)
    at 
/opt/conda/conda-bld/compilers_linux-64_1505664199673/work/.build/src/gcc-7.2.0/libstdc++-v3/src/c++11/thread.cc:110
#7  0x00007ffff7bc16ba in start_thread (arg=0x7fffe3392700) at 
pthread_create.c:333
#8  0x00007ffff78f73dd in clone () at 
../sysdeps/unix/sysv/linux/x86_64/clone.S:109
{code}




--
This message was sent by Atlassian JIRA
(v6.4.14#64029)

Reply via email to