Antoine Pitrou created ARROW-2514: ------------------------------------- Summary: [Python] Inferring / converting nested Numpy array is very slow Key: ARROW-2514 URL: https://issues.apache.org/jira/browse/ARROW-2514 Project: Apache Arrow Issue Type: Bug Components: Python Affects Versions: 0.9.0 Reporter: Antoine Pitrou
Converting a nested Numpy array nested walks over the Numpy data as Python objects, even if the dtype is not "object". This makes it pointlessly slow compared to the non-nested case, and even the nested Python list case: {code:python} >>> %%timeit data = list(range(10000)) ...:pa.array(data) ...: 746 µs ± 8.36 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each) >>> %%timeit data = np.arange(10000) ...:pa.array(data) ...: 81.1 µs ± 57.7 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each) >>> %%timeit data = [np.arange(10000)] ...:pa.array(data) ...: 3.39 ms ± 6.27 µs per loop (mean ± std. dev. of 7 runs, 100 loops each) {code} -- This message was sent by Atlassian JIRA (v7.6.3#76005)