[ https://issues.apache.org/jira/browse/BAHIR-261?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel ]
Abdul-Raheman MouhamadSultane updated BAHIR-261: ------------------------------------------------ Priority: Minor (was: Major) > Integration of streaming-pubsub in Pyspark > ------------------------------------------ > > Key: BAHIR-261 > URL: https://issues.apache.org/jira/browse/BAHIR-261 > Project: Bahir > Issue Type: Bug > Components: Spark Structured Streaming Connectors > Affects Versions: Spark-2.4.0 > Environment: MacOS Big Sur 11.2.1 > PySpark cmd (./spark-2.4.7-bin-hadoop2.7/bin/pyspark --packages > org.apache.bahir:spark-streaming-pubsub_2.11:2.4.0) > Reporter: Abdul-Raheman MouhamadSultane > Priority: Minor > Labels: GCP, pubsub, pyspark, question, stream > > Hello folks 👋 >  > I was wondering if there is a possible update that will allow to use pub/sub > DStream in PySpark, it does not seems to exist with the current version > (2.4.0). >  > I tried to manually instantiate the pub/sub stream from Pyspark as follow: >  > {code:java} > import pyspark > from pyspark.streaming import DStream, StreamingContext > from pyspark.serializers import UTF8Deserializer > ssc = StreamingContext(sc, 1) > jlevel = ssc._sc._getJavaStorageLevel(pyspark.StorageLevel.MEMORY_AND_DISK_2) > creds = > sc._jvm.org.apache.spark.streaming.pubsub.SparkGCPCredentials.Builder().jsonServiceAccount("GDCP_CREDS.json").build() > jstream = > sc._jvm.org.apache.spark.streaming.pubsub.PubsubUtils.createStream(ssc._jssc, > "PROJECT_NAME", None, "SUB_NAME", creds, jlevel) > dstream = DStream(jstream, ssc, UTF8Deserializer()) > ssc.start()ssc.awaitTermination() > df.writeStream.foreachBatch(batch_processor).start().awaitTermination(){code} >  >  > But I run into the following issue (*org.apache.spark.SparkException: > Unexpected element type class > org.apache.spark.streaming.pubsub.SparkPubsubMessage*) > {code:java} > 21/02/25 10:48:59 ERROR TaskSetManager: Task 0 in stage 2.0 failed 1 times; > aborting job > 21/02/25 10:48:59 ERROR JobScheduler: Error running job streaming job > 1614246539000 ms.0 > org.apache.spark.SparkException: An exception was raised by Python: > Traceback (most recent call last): > File > "/PATH/test_streaming_call/spark-2.4.7-bin-hadoop2.7/python/pyspark/streaming/util.py", > line 68, in call > r = self.func(t, *rdds) > File > "/PATH/test_streaming_call/spark-2.4.7-bin-hadoop2.7/python/pyspark/streaming/dstream.py", > line 173, in takeAndPrint > taken = rdd.take(num + 1) > File > "/PATH/test_streaming_call/spark-2.4.7-bin-hadoop2.7/python/pyspark/rdd.py", > line 1360, in take > res = self.context.runJob(self, takeUpToNumLeft, p) > File > "/PATH/test_streaming_call/spark-2.4.7-bin-hadoop2.7/python/pyspark/context.py", > line 1069, in runJob > sock_info = self._jvm.PythonRDD.runJob(self._jsc.sc(), mappedRDD._jrdd, > partitions) > File > "/PATH/test_streaming_call/spark-2.4.7-bin-hadoop2.7/python/lib/py4j-0.10.7-src.zip/py4j/java_gateway.py", > line 1257, in __call__ > answer, self.gateway_client, self.target_id, self.name) > File > "/PATH/test_streaming_call/spark-2.4.7-bin-hadoop2.7/python/pyspark/sql/utils.py", > line 63, in deco > return f(*a, **kw) > File > "/PATH/test_streaming_call/spark-2.4.7-bin-hadoop2.7/python/lib/py4j-0.10.7-src.zip/py4j/protocol.py", > line 328, in get_return_value > format(target_id, ".", name), value) > Py4JJavaError: An error occurred while calling > z:org.apache.spark.api.python.PythonRDD.runJob. > : org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 > in stage 2.0 failed 1 times, most recent failure: Lost task 0.0 in stage 2.0 > (TID 2, localhost, executor driver): org.apache.spark.SparkException: > Unexpected element type class > org.apache.spark.streaming.pubsub.SparkPubsubMessage > at > org.apache.spark.api.python.PythonRDD$.org$apache$spark$api$python$PythonRDD$$write$1(PythonRDD.scala:221) > at > org.apache.spark.api.python.PythonRDD$$anonfun$writeIteratorToStream$1.apply(PythonRDD.scala:224) > at > org.apache.spark.api.python.PythonRDD$$anonfun$writeIteratorToStream$1.apply(PythonRDD.scala:224) > at scala.collection.Iterator$class.foreach(Iterator.scala:891) > at > org.apache.spark.util.CompletionIterator.foreach(CompletionIterator.scala:25) > at > org.apache.spark.api.python.PythonRDD$.writeIteratorToStream(PythonRDD.scala:224) > at > org.apache.spark.api.python.PythonRunner$$anon$2.writeIteratorToStream(PythonRunner.scala:561) > at > org.apache.spark.api.python.BasePythonRunner$WriterThread$$anonfun$run$1.apply(PythonRunner.scala:346) > at > org.apache.spark.util.Utils$.logUncaughtExceptions(Utils.scala:1945) > at > org.apache.spark.api.python.BasePythonRunner$WriterThread.run(PythonRunner.scala:195)Driver > stacktrace: > at > org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1925) > at > org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1913) > at > org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1912) > at > scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) > at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48) > at > org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1912) > at > org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:948) > at > org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:948) > at scala.Option.foreach(Option.scala:257) > at > org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:948) > at > org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2146) > at > org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2095) > at > org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2084) > at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49) > at > org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:759) > at org.apache.spark.SparkContext.runJob(SparkContext.scala:2061) > at org.apache.spark.SparkContext.runJob(SparkContext.scala:2082) > at org.apache.spark.SparkContext.runJob(SparkContext.scala:2101) > at org.apache.spark.api.python.PythonRDD$.runJob(PythonRDD.scala:153) > at org.apache.spark.api.python.PythonRDD.runJob(PythonRDD.scala) > at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) > at > sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) > at > sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) > at java.lang.reflect.Method.invoke(Method.java:498) > at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244) > at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357) > at py4j.Gateway.invoke(Gateway.java:282) > at > py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132) > at py4j.commands.CallCommand.execute(CallCommand.java:79) > at py4j.GatewayConnection.run(GatewayConnection.java:238) > at java.lang.Thread.run(Thread.java:748) > Caused by: org.apache.spark.SparkException: Unexpected element type class > org.apache.spark.streaming.pubsub.SparkPubsubMessage > at > org.apache.spark.api.python.PythonRDD$.org$apache$spark$api$python$PythonRDD$$write$1(PythonRDD.scala:221) > at > org.apache.spark.api.python.PythonRDD$$anonfun$writeIteratorToStream$1.apply(PythonRDD.scala:224) > at > org.apache.spark.api.python.PythonRDD$$anonfun$writeIteratorToStream$1.apply(PythonRDD.scala:224) > at scala.collection.Iterator$class.foreach(Iterator.scala:891) > at > org.apache.spark.util.CompletionIterator.foreach(CompletionIterator.scala:25) > at > org.apache.spark.api.python.PythonRDD$.writeIteratorToStream(PythonRDD.scala:224) > at > org.apache.spark.api.python.PythonRunner$$anon$2.writeIteratorToStream(PythonRunner.scala:561) > at > org.apache.spark.api.python.BasePythonRunner$WriterThread$$anonfun$run$1.apply(PythonRunner.scala:346) > at > org.apache.spark.util.Utils$.logUncaughtExceptions(Utils.scala:1945) > at > org.apache.spark.api.python.BasePythonRunner$WriterThread.run(PythonRunner.scala:195) > at > org.apache.spark.streaming.api.python.TransformFunction.callPythonTransformFunction(PythonDStream.scala:95) > at > org.apache.spark.streaming.api.python.TransformFunction.apply(PythonDStream.scala:78) > at > org.apache.spark.streaming.api.python.PythonDStream$$anonfun$callForeachRDD$1.apply(PythonDStream.scala:179) > at > org.apache.spark.streaming.api.python.PythonDStream$$anonfun$callForeachRDD$1.apply(PythonDStream.scala:179) > at > org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply$mcV$sp(ForEachDStream.scala:51) > at > org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply(ForEachDStream.scala:51) > at > org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply(ForEachDStream.scala:51) > at > org.apache.spark.streaming.dstream.DStream.createRDDWithLocalProperties(DStream.scala:416) > at > org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply$mcV$sp(ForEachDStream.scala:50) > at > org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply(ForEachDStream.scala:50) > at > org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply(ForEachDStream.scala:50) > at scala.util.Try$.apply(Try.scala:192) > at org.apache.spark.streaming.scheduler.Job.run(Job.scala:39) > at > org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply$mcV$sp(JobScheduler.scala:257) > at > org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply(JobScheduler.scala:257) > at > org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply(JobScheduler.scala:257) > at scala.util.DynamicVariable.withValue(DynamicVariable.scala:58) > at > org.apache.spark.streaming.scheduler.JobScheduler$JobHandler.run(JobScheduler.scala:256) > at > java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) > at > java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) > at java.lang.Thread.run(Thread.java:748) > {code} > Seems that the receiver *store* data in internal format called > *SparkPubsubMessage* format > ([https://github.com/apache/bahir/blob/62df1108145ee0305c5c7416a7dadeae5930aab8/streaming-pubsub/src/main/scala/org/apache/spark/streaming/pubsub/PubsubInputDStream.scala#L68)] >  > Is there a way to make RDD in python interpret the *SparkPubsubMessage* > object ? >  > Thanks a lot, feel free to ask details if needed :D ! >  -- This message was sent by Atlassian Jira (v8.3.4#803005)