Hi
Today, I user Eclipse debug code,When I submit to spark cluster,After a
moment,I see some error message,It as below:
2017-03-20 16:37:44 ERROR
org.apache.spark.Logging$class.logError(Logging.scala:74) task-result-getter-3
[Task 31.0 in stage 109.0 (TID 848) had a not serializable result:
org.apache.beam.runners.spark.stateful.SparkGroupAlsoByWindowViaWindowSet$StateAndTimers
Serialization stack:
- object not serializable (class:
org.apache.beam.runners.spark.stateful.SparkGroupAlsoByWindowViaWindowSet$StateAndTimers,
value:
org.apache.beam.runners.spark.stateful.SparkGroupAlsoByWindowViaWindowSet$StateAndTimers@658604bb)
- field (class: scala.Tuple2, name: _1, type: class java.lang.Object)
- object (class scala.Tuple2,
(org.apache.beam.runners.spark.stateful.SparkGroupAlsoByWindowViaWindowSet$StateAndTimers@658604bb,[]))
- field (class: scala.Tuple2, name: _2, type: class java.lang.Object)
- object (class scala.Tuple2,
(org.apache.beam.runners.spark.util.ByteArray@107f,(org.apache.beam.runners.spark.stateful.SparkGroupAlsoByWindowViaWindowSet$StateAndTimers@658604bb,[])));
not retrying]
2017-03-20 16:37:44 ERROR
org.apache.spark.Logging$class.logError(Logging.scala:95) JobScheduler [Error
running job streaming job 1489998839500 ms.0]
org.apache.spark.SparkException: Job aborted due to stage failure: Task 31.0 in
stage 109.0 (TID 848) had a not serializable result:
org.apache.beam.runners.spark.stateful.SparkGroupAlsoByWindowViaWindowSet$StateAndTimers
Serialization stack:
- object not serializable (class:
org.apache.beam.runners.spark.stateful.SparkGroupAlsoByWindowViaWindowSet$StateAndTimers,
value:
org.apache.beam.runners.spark.stateful.SparkGroupAlsoByWindowViaWindowSet$StateAndTimers@658604bb)
- field (class: scala.Tuple2, name: _1, type: class java.lang.Object)
- object (class scala.Tuple2,
(org.apache.beam.runners.spark.stateful.SparkGroupAlsoByWindowViaWindowSet$StateAndTimers@658604bb,[]))
- field (class: scala.Tuple2, name: _2, type: class java.lang.Object)
- object (class scala.Tuple2,
(org.apache.beam.runners.spark.util.ByteArray@107f,(org.apache.beam.runners.spark.stateful.SparkGroupAlsoByWindowViaWindowSet$StateAndTimers@658604bb,[])))
at
org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1431)
~[spark-assembly-1.6.3-hadoop2.6.0.jar:1.6.3]
at
org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1419)
~[spark-assembly-1.6.3-hadoop2.6.0.jar:1.6.3]
at
org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1418)
~[spark-assembly-1.6.3-hadoop2.6.0.jar:1.6.3]
at
scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
~[scala-library-2.10.4.jar:?]
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
~[scala-library-2.10.4.jar:?]
at
org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1418)
~[spark-assembly-1.6.3-hadoop2.6.0.jar:1.6.3]
at
org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:799)
~[spark-assembly-1.6.3-hadoop2.6.0.jar:1.6.3]
at
org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:799)
~[spark-assembly-1.6.3-hadoop2.6.0.jar:1.6.3]
at scala.Option.foreach(Option.scala:236) ~[scala-library-2.10.4.jar:?]
at
org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:799)
~[spark-assembly-1.6.3-hadoop2.6.0.jar:1.6.3]
at
org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1640)
~[spark-assembly-1.6.3-hadoop2.6.0.jar:1.6.3]
at
org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1599)
~[spark-assembly-1.6.3-hadoop2.6.0.jar:1.6.3]
at
org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1588)
~[spark-assembly-1.6.3-hadoop2.6.0.jar:1.6.3]
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
[spark-assembly-1.6.3-hadoop2.6.0.jar:1.6.3]
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:620)
~[spark-assembly-1.6.3-hadoop2.6.0.jar:1.6.3]
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1832)
~[spark-assembly-1.6.3-hadoop2.6.0.jar:1.6.3]
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1845)
~[spark-assembly-1.6.3-hadoop2.6.0.jar:1.6.3]
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1858)
~[spark-assembly-1.6.3-hadoop2.6.0.jar:1.6.3]
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1929)
~[spark-assembly-1.6.3-hadoop2.6.0.jar:1.6.3]
at
org.apache.spark.streaming.dstream.DStream$$anonfun$2.apply(DStream.scala:446)
~[spark-assembly-1.6.3-hadoop2.6.0.jar:1.6.3]
at
org.apache.spark.streaming.dstream.DStream$$anonfun$2.apply(DStream.scala:444)
~[spark-assembly-1.6.3-hadoop2.6.0.jar:1.6.3]
at scala.util.Try$.apply(Try.scala:161) ~[scala-library-2.10.4.jar:?]
at org.apache.spark.streaming.scheduler.Job.run(Job.scala:39)
~[spark-assembly-1.6.3-hadoop2.6.0.jar:1.6.3]
at
org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply$mcV$sp(JobScheduler.scala:224)
~[spark-assembly-1.6.3-hadoop2.6.0.jar:1.6.3]
at
org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply(JobScheduler.scala:224)
~[spark-assembly-1.6.3-hadoop2.6.0.jar:1.6.3]
at
org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply(JobScheduler.scala:224)
~[spark-assembly-1.6.3-hadoop2.6.0.jar:1.6.3]
at scala.util.DynamicVariable.withValue(DynamicVariable.scala:57)
~[scala-library-2.10.4.jar:?]
at
org.apache.spark.streaming.scheduler.JobScheduler$JobHandler.run(JobScheduler.scala:223)
~[spark-assembly-1.6.3-hadoop2.6.0.jar:1.6.3]
at java.util.concurrent.ThreadPoolExecutor.runWorker(Unknown Source)
~[?:1.7.0_67]
at java.util.concurrent.ThreadPoolExecutor$Worker.run(Unknown Source)
~[?:1.7.0_67]
at java.lang.Thread.run(Unknown Source) ~[?:1.7.0_67]
Please help me to resovle this proplem,Thanks.
From: Jiyu JY2 Shi
Sent: Friday, March 17, 2017 5:22 PM
To: '[email protected]'
Subject: user beam in pre-spark cluster have some proplems
Hi
I user beam in spark cluster,The application is blow.
SparkPipelineOptions options =
PipelineOptionsFactory.as(SparkPipelineOptions.class);
options.setRunner(SparkRunner.class);
options.setEnableSparkMetricSinks(false);
options.setStreaming(true);
options.setSparkMaster("spark://10.100.124.205:6066");
options.setAppName("Beam App Spark"+new Random().nextFloat());
options.setJobName("Beam Job Spark"+new Random().nextFloat());
System.out.println("App Name:"+options.getAppName());
System.out.println("Job Name:"+options.getJobName());
options.setMaxRecordsPerBatch(100000L);
// PipelineOptions options = PipelineOptionsFactory.create();
Pipeline p = Pipeline.create(options);
// Duration size = Duration.standardMinutes(4);
long duration = 60;
if(args!=null && args.length==1){
duration = Integer.valueOf(args[0]);
}
Duration size = Duration.standardSeconds(duration);
System.out.println("时间窗口为:["+duration+"]秒");
Window.Bound<KV<String,String>> fixWindow = Window.<KV<String,String>>
into(
FixedWindows.of(size)
);
String kafkaAddress = "10.100.124.208:9093";
// String kafkaAddress = "192.168.100.212:9092";
Map<String, Object> kfConsunmerConf = new HashMap<String, Object>();
kfConsunmerConf.put("auto.offset.reset", "latest");
PCollection<String> kafkaJsonPc = p.apply(KafkaIO.<String, String>
read()
.withBootstrapServers(kafkaAddress)
.withTopics(ImmutableList.of("wypxx1"))
.withKeyCoder(StringUtf8Coder.of())
.withValueCoder(StringUtf8Coder.of())
.updateConsumerProperties(kfConsunmerConf)
.withoutMetadata()
).apply(Values.<String> create());
PCollection<KV<String,String>> totalPc = kafkaJsonPc.apply(
"count line",
ParDo.of(new DoFn<String,KV<String,String>>() {
@ProcessElement
public void processElement(ProcessContext c) {
String line = c.element();
Instant is = c.timestamp();
if(line.length()>2)
line = line.substring(0,2);
System.out.println(line + " " + is.toString());
c.output(KV.of(line, line));
}
})
);
PCollection<KV<String, Iterable<String>>> itPc =
totalPc.apply(fixWindow).apply(
"group by appKey",
GroupByKey.<String, String>create()
);
itPc.apply(ParDo.of(new DoFn<KV<String, Iterable<String>>, Void>() {
@ProcessElement
public void processElement(ProcessContext c) {
KV<String, Iterable<String>> keyIt = c.element();
String key = keyIt.getKey();
Iterable<String> itb = keyIt.getValue();
Iterator<String> it = itb.iterator();
StringBuilder sb = new StringBuilder();
sb.append(key).append(":[");
while(it.hasNext()){
sb.append(it.next()).append(",");
}
String str = sb.toString();
str = str.substring(0,str.length() -1) + "]";
System.out.println(str);
String filePath = "/data/wyp/sparktest.txt";
String line = "word-->["+key+"]total
count="+str+"--->time+"+c.timestamp().toString();
System.out.println("writefile----->"+line);
FileUtil.write(filePath, line, true, true);
}
}));
p.run().waitUntilFinish();
When I user submit application to spark cluster.In spark UI,I can see log of
totalPc PCollection of. after one miniter but I can.t see log of itPc
PCollection.
I use local mode spark,It work well.
Please help me to resovle this proplems.Thanks!