Created related feature request https://github.com/apache/beam/issues/29789

We have to put more thought into exactly how to come up with merged
environments that do not result in conflicts. I prefer trying to
automatically do this on the SDK side instead of pushing the complexity to
the user (for example, isolating dependencies within the same environment
using classloaders for Java).

Thanks,
Cham

On Fri, Dec 15, 2023 at 1:36 PM Joey Tran <joey.t...@schrodinger.com> wrote:

> Yeah, we already have `ResourceHint.get_merged_value(cls, outer_value,
> inner_value)` for reconciling resources within a composite, in the future
> we could possibly just have another similar method and have the environment
> merging logic hook into that.
>
> On Fri, Dec 15, 2023 at 3:53 PM Robert Bradshaw via dev <
> dev@beam.apache.org> wrote:
>
>> There is definitely a body of future work in intelligently merging
>> compatible-but-not-equal environments. (Dataflow does this for example.)
>> Defining/detecting compatibility is not always easy, but sometimes is, and
>> we should at least cover those cases and grow them over time.
>>
>> On Fri, Dec 15, 2023 at 5:57 AM Joey Tran <joey.t...@schrodinger.com>
>> wrote:
>>
>>> Yeah I can confirm for the python runners (based on my reading of the
>>> translations.py [1]) that only identical environments are merged together.
>>>
>>> The funny thing is that we _originally_ implemented this hint as an
>>> annotation but then changed it to hint because it semantically felt more
>>> correct. I think we might go back to that since the environment merging
>>> logic isn't too flexible / easy to customize. Our type of hint is a bit
>>> unlike other hints anyways. Unlike resources like MinRam, these resources
>>> are additive (e.g. you can merge an environment that requires license A and
>>> an environment that requires license B into an environment that requires
>>> both A and B)
>>>
>>> [1]
>>> https://github.com/apache/beam/blob/5fb4db31994d7c2c1e04d32a4b153bc83d739f36/sdks/python/apache_beam/runners/portability/fn_api_runner/translations.py#L4
>>>
>>> On Fri, Dec 15, 2023 at 8:43 AM Robert Burke <rob...@frantil.com> wrote:
>>>
>>>> That would do it. We got so tunnel visioned on side inputs we missed
>>>> that!
>>>>
>>>> IIRC the python local runner and Prism both only fuse transforms in
>>>> identical environments together. So any environmental diffs will prevent
>>>> fusion.
>>>>
>>>> Runners as a rule are usually free to ignore/manage hints as they like.
>>>> Transform annotations might be an alternative, but how those are managed
>>>> would be more SDK specific.
>>>>
>>>> On Fri, Dec 15, 2023, 5:21 AM Joey Tran <joey.t...@schrodinger.com>
>>>> wrote:
>>>>
>>>>> I figured out my issue. I thought side inputs were breaking up my
>>>>> pipeline but after experimenting with my transforms I now realize what was
>>>>> actually breaking it up was different transform environments that weren't
>>>>> considered compatible.
>>>>>
>>>>> We have a custom resource hint (for specifying whether a transform
>>>>> needs access to some software license) that we use with our transforms and
>>>>> that's what was preventing the fusion I was expecting. I'm I'm looking 
>>>>> into
>>>>> how to make these hints mergeable now.
>>>>>
>>>>> On Thu, Dec 14, 2023 at 7:46 PM Robert Burke <rob...@frantil.com>
>>>>> wrote:
>>>>>
>>>>>> Building on what Robert Bradshaw has said, basically, if these fusion
>>>>>> breaks don't exist, the pipeline can live lock, because the side input is
>>>>>> unable to finish computing for a given input element's window.
>>>>>>
>>>>>> I have recently added fusion to the Go Prism runner based on the
>>>>>> python side input semantics, and i was surprised that there are basically
>>>>>> two rules for fusion. The side input one, and for handling Stateful
>>>>>> processing.
>>>>>>
>>>>>>
>>>>>> This code here is the greedy fusion algorithm that Python uses, but a
>>>>>> less set based, so it might be easier to follow:
>>>>>> https://github.com/apache/beam/blob/master/sdks/go/pkg/beam/runners/prism/internal/preprocess.go#L513
>>>>>>
>>>>>> From the linked code comment:
>>>>>>
>>>>>> Side Inputs: A transform S consuming a PCollection as a side input
>>>>>> can't
>>>>>>  be fused with the transform P that produces that PCollection.
>>>>>> Further,
>>>>>> no transform S+ descended from S, can be fused with transform P.
>>>>>>
>>>>>> Ideally I'll add visual representations of the graphs in the test
>>>>>> suite here, that validates the side input dependency logic:
>>>>>>
>>>>>>
>>>>>> https://github.com/apache/beam/blob/master/sdks/go/pkg/beam/runners/prism/internal/preprocess_test.go#L398
>>>>>>
>>>>>> (Note, that test doesn't validate expected fusion results, Prism is a
>>>>>> work in progress).
>>>>>>
>>>>>>
>>>>>> As for the Stateful rule, this is largely an implementation
>>>>>> convenience for runners to ensure correct execution.
>>>>>> If your pipeline also uses Stateful transforms, or SplittableDoFns,
>>>>>> those are usually relegated to the root of a fused stage, and avoids
>>>>>> fusions with each other. That can also cause additional stages.
>>>>>>
>>>>>> If Beam adopted a rigorous notion of Key Preserving for transforms,
>>>>>> multiple stateful transforms could be fused in the same stage. But 
>>>>>> that's a
>>>>>> very different discussion.
>>>>>>
>>>>>> On Thu, Dec 14, 2023, 4:03 PM Joey Tran <joey.t...@schrodinger.com>
>>>>>> wrote:
>>>>>>
>>>>>>> Thanks for the explanation!
>>>>>>>
>>>>>>> That matches with my intuition - are there any other rules with side
>>>>>>> inputs?
>>>>>>>
>>>>>>> I might be misunderstanding the actual cause of the fusion breaks in
>>>>>>> our pipeline, but we essentially have one part of the graph that 
>>>>>>> produces
>>>>>>> many small collections that are used as side inputs in the remaining 
>>>>>>> part
>>>>>>> of the graph. In other words, the "main graph" is mostly linear but uses
>>>>>>> side inputs from the earlier part of the graph.
>>>>>>>
>>>>>>>  Since the main graph is mostly linear, I expected few stages, but
>>>>>>> what I actually see are a lot of breaks around the side input requiring
>>>>>>> transforms.
>>>>>>>
>>>>>>>
>>>>>>> Tangentially, are there any general tips for understanding why a
>>>>>>> graph might be fused the way it was?
>>>>>>>
>>>>>>> On Thu, Dec 14, 2023, 6:10 PM Robert Bradshaw via dev <
>>>>>>> dev@beam.apache.org> wrote:
>>>>>>>
>>>>>>>> That is correct. Side inputs give a view of the "whole" PCollection
>>>>>>>> and hence introduce a fusion-producing barrier. For example, suppose 
>>>>>>>> one
>>>>>>>> has a DoFn that produces two outputs, mainPColl and sidePColl, that are
>>>>>>>> consumed (as the main and side input respectively) of DoFnB.
>>>>>>>>
>>>>>>>>                   -------- mainPColl ----- DoFnB
>>>>>>>>                 /                            ^
>>>>>>>> inPColl -- DoFnA                             |
>>>>>>>>                 \                            |
>>>>>>>>                   -------- sidePColl ------- /
>>>>>>>>
>>>>>>>>
>>>>>>>> Now DoFnB may iterate over the entity of sidePColl for every
>>>>>>>> element of mainPColl. This means that DoFnA and DoFnB cannot be fused,
>>>>>>>> which would require DoFnB to consume the elements as they are produced 
>>>>>>>> from
>>>>>>>> DoFnA, but we need DoFnA to run to completion before we know the 
>>>>>>>> contents
>>>>>>>> of sidePColl.
>>>>>>>>
>>>>>>>> Similar constraints apply in larger graphs (e.g. there may be many
>>>>>>>> intermediate DoFns and PCollections), but they principally boil down to
>>>>>>>> shapes that look like this.
>>>>>>>>
>>>>>>>> Though this does not introduce a global barrier in streaming, there
>>>>>>>> is still the analogous per window/watermark barrier that prevents 
>>>>>>>> fusion
>>>>>>>> for the same reasons.
>>>>>>>>
>>>>>>>>
>>>>>>>>
>>>>>>>>
>>>>>>>> On Thu, Dec 14, 2023 at 3:02 PM Joey Tran <
>>>>>>>> joey.t...@schrodinger.com> wrote:
>>>>>>>>
>>>>>>>>> Hey all,
>>>>>>>>>
>>>>>>>>> We have a pretty big pipeline and while I was inspecting the
>>>>>>>>> stages, I noticed there is less fusion than I expected. I suspect it 
>>>>>>>>> has to
>>>>>>>>> do with the heavy use of side inputs in our workflow. In the python 
>>>>>>>>> sdk, I
>>>>>>>>> see that side inputs are considered when determining whether two 
>>>>>>>>> stages are
>>>>>>>>> fusible. I have a hard time getting a clear understanding of the logic
>>>>>>>>> though. Could someone clarify / summarize the rules around this?
>>>>>>>>>
>>>>>>>>> Thanks!
>>>>>>>>> Joey
>>>>>>>>>
>>>>>>>>

Reply via email to