GSoC 2025 Proposal: A Learning Path to Using Accelerators with Apache Beam
Personal Information
Name: Sai Shashank Mudliar
Email: shashanksai.ss@gmail.com
LinkedIn: https://www.linkedin.com/in/ssmudliar/
Timezone: EST
University: Purdue University, Computer Engineering (Full-time Student)
Industry Experience: Staff Machine Learning Engineer, CVS Health

About Me
I am a full-time Computer Engineering student at Purdue University and have served as a Staff Machine Learning Engineer at CVS Health, where I architected and operated large-scale ML inference systems on Google Cloud Dataflow. This combination of rigorous academic training in computer engineering and hands-on industry experience at staff-level gives me a unique perspective for this project -- I understand both the theoretical foundations of hardware acceleration and the practical realities of deploying accelerator-backed ML pipelines at enterprise scale. My work sits precisely at the intersection of this project's goals: making hardware accelerators accessible and productive for ML workloads running on Apache Beam.
Production Beam + Accelerator Experience:
Deployed multiple ML models at inference scale on Dataflow serving production healthcare workloads. These pipelines process millions of records daily using the RunInference transform with PyTorch and TensorFlow model handlers, running on both CPU and GPU-backed workers. I can provide sample code demonstrating these production patterns.
Authored an internal ML Inference Cookbook at CVS Health -- a comprehensive guide used across ML teams for deploying models on Dataflow. The cookbook covers model handler selection, GPU configuration, batch size tuning, Docker image construction, and production monitoring. This experience directly informs Deliverable 5 (blog post) of this proposal -- I have already written this kind of educational material for a large enterprise audience.
Built and operated GPU-accelerated Dataflow pipelines using custom Docker containers with NVIDIA CUDA runtimes, configuring worker_accelerator experiments for T4 and A100 GPUs, and tuning batch sizes and worker parallelism for throughput optimization.
Led a Proof-of-Concept for NVIDIA Triton Inference Server integration with Beam at CVS Health. Triton was not natively supported by Beam, so I implemented a custom ModelHandler from scratch. This involved managing the gRPC/HTTP client lifecycle within DoFn.setup(), handling model ensemble routing, building custom batching logic that respected Triton's dynamic batching semantics, and managing model repository configurations across Dataflow workers. This POC validated that Beam's ModelHandler abstraction is flexible enough to support non-native inference servers -- a key architectural insight that I will bring to this project's examples.
Currently working on updating Beam's TensorRT handler to support TensorRT 10.x. The existing TensorRTEngineHandlerNumPy in tensorrt_inference.py uses deprecated TensorRT 8.x/9.x APIs that are incompatible with TensorRT 10.x. Specifically:
engine.num_bindings, get_binding_name(), get_binding_dtype(), get_binding_shape(), binding_is_input() (lines 132-147) are replaced by the tensor-based API (num_io_tensors, get_tensor_name(), get_tensor_dtype(), get_tensor_shape(), get_tensor_mode()) in TRT 10.x
context.execute_async_v2() (line 204) is replaced by execute_async_v3() with explicit tensor address setting
trt.volume() (line 136) is removed entirely in TRT 10.x
NetworkDefinitionCreationFlag.EXPLICIT_BATCH (line 65) is no longer needed as all networks are explicit-batch by default
 I am actively working on a backward-compatible update that supports both TRT 8.x/9.x and 10.x, and plan to submit this as a PR to Apache Beam. This contribution demonstrates my ability to work on the Beam ML SDK internals, not just the examples layer.
Operated multi-model inference pipelines using KeyedModelHandler to route different data segments to different model versions in a single Beam pipeline, directly analogous to the patterns shown in per_key_models.ipynb and run_inference_pytorch.ipynb (Pattern 4).
Built custom Dataflow Flex Templates with GPU-compatible Docker images, managing the full lifecycle from Dockerfile construction, Artifact Registry publishing, and Flex Template metadata configuration -- the exact workflow demonstrated in dataflow_tpu_examples.ipynb and run_inference_vllm.ipynb.
Relevant Technical Skills:
Frameworks: PyTorch, TensorFlow/Keras, JAX, ONNX Runtime, TensorRT (8.x/9.x/10.x), vLLM, Triton Inference Server, HuggingFace Transformers
Infrastructure: Google Cloud Dataflow, GKE, Cloud TPUs, NVIDIA GPUs (T4, A100, L4), Docker, Artifact Registry, Cloud Build
Apache Beam: RunInference API, PTransforms, DoFns, custom ModelHandlers, Pipeline Options, Flex Templates, side inputs for model refresh
Languages: Python (primary), Java (reading proficiency for Beam SDK internals)
Open Source Contributions:
[In Progress] Updating TensorRTEngineHandlerNumPy to support TensorRT 10.x (PR forthcoming to apache/beam) https://github.com/apache/beam/pull/36309/changes/c260d81b3f9dda4bfff8e069b4c30fee31bac710..caa66d7f135cd1a0fa6bcd67d26b28101707a0b9
Project Overview
Problem Statement
Apache Beam has powerful ML inference capabilities through the RunInference transform and a rich set of ModelHandler implementations (PyTorch, TensorFlow, vLLM, ONNX, TensorRT, HuggingFace, sklearn, XGBoost). Hardware accelerators (GPUs and TPUs) can dramatically improve the throughput and latency of these workloads. However, the current example set has significant gaps that make it difficult for newcomers to progressively learn how to leverage accelerators:
Gap 1: No Progressive Learning Path. The existing examples jump directly into complex setups. dataflow_tpu_examples.ipynb starts with Docker containers, Flex Templates, Artifact Registry, and TPU environment variables. run_inference_vllm.ipynb requires GPU runtimes. There is no "Step 0" that shows a simple CPU-only script, then demonstrates why and how accelerators help.
Gap 2: No Standalone Python Scripts. All 44 existing examples in examples/notebooks/beam-ml/ are Jupyter notebooks. There are no standalone .py scripts that a user can clone, modify, and run -- the format most natural for production deployment and CI integration.
Gap 3: No Training Examples. The entire beam-ml example set is focused exclusively on inference. There are zero examples showing how to use Beam for distributed model training with accelerators, despite this being a common need (e.g., training multiple model variants in parallel across a hyperparameter grid).
Gap 4: No Continuous Validation. The existing notebooks are not continuously tested. The CI infrastructure (.github/workflows/) has inference benchmarks for GPU workloads (ResNet-152 on T4, vLLM Gemma), but the educational notebooks themselves have no automated freshness checks.
Gap 5: Stale Accelerator SDK Support. The existing TensorRTEngineHandlerNumPy in tensorrt_inference.py uses deprecated TensorRT 8.x/9.x APIs (num_bindings, get_binding_name, execute_async_v2, trt.volume) that are incompatible with TensorRT 10.x. Users attempting to use Beam with modern NVIDIA toolchains will encounter runtime failures. I am actively working on fixing this and will submit the PR as a pre-GSoC contribution.
Proposed Solution
Build a structured, progressive learning path consisting of 5 deliverables that take a user from a simple CPU-only Python script to running parallel multi-model training on accelerators, with continuous testing to ensure the examples remain functional. Additionally, fix the TensorRT 10.x compatibility issue to ensure the accelerator examples work with current NVIDIA toolchains.

Detailed Project Plan
Deliverable 1: CPU Baseline -- "The Slow Way"
Goal: A standalone Python script that performs ML inference without accelerators, establishing a measurable performance baseline.
File: examples/accelerator_learning_path/01_cpu_baseline.py
Content:
01_cpu_baseline.py
A simple Beam pipeline that runs image classification on CPU.
This script establishes the baseline performance that we will
improve upon with hardware accelerators.
What it demonstrates:
A self-contained Beam pipeline using DirectRunner
PytorchModelHandlerTensor with device='CPU' loading a ResNet-50 model
Image preprocessing as a DoFn (read, resize, normalize, convert to tensor)
RunInference transform for batch prediction
Metrics collection: wall-clock time, throughput (images/second), per-image latency
Output comparison and validation
Key design choices:
Uses a real, non-trivial model (ResNet-50 image classification) so the CPU-vs-GPU difference is tangible, not a toy y = 5x linear regression
Includes a timing harness that measures and prints throughput metrics, so users can quantitatively compare with later accelerator-enabled versions
Uses beam.Create() with a bundled set of sample images (or downloads a small subset from a public dataset) so no external dependencies are needed
Runs entirely locally with DirectRunner -- no cloud setup required
Notebook companion: examples/accelerator_learning_path/01_cpu_baseline.ipynb -- an interactive notebook version with inline visualizations of the results (throughput chart, sample predictions with images).

Deliverable 2: GPU Acceleration -- "The Fast Way"
Goal: Modify the baseline script to use GPU acceleration, demonstrating the performance improvement.
File: examples/accelerator_learning_path/02_gpu_inference.py
Content:
02_gpu_inference.py
The same image classification pipeline, now using GPU acceleration.
Compare throughput with the CPU baseline.
What it demonstrates:
Switching PytorchModelHandlerTensor(device='GPU') -- a one-line change from the CPU baseline
How PyTorch's CUDA fallback works (from pytorch_inference.py:89-93: if GPU requested but unavailable, falls back to CPU with a warning)
Running locally on a GPU-enabled machine (Colab with T4)
Running on Dataflow with GPU workers using:
Custom Docker image with CUDA runtime (building on the pattern from run_inference_vllm.ipynb)
--experiments worker_accelerator=type:nvidia-tesla-t4;count:1;install-nvidia-driver:5xx
Appropriate --machine_type (e.g., n1-standard-4)
Side-by-side throughput comparison: CPU vs GPU
Batch size tuning with min_batch_size / max_batch_size for GPU utilization
Advanced section:
Using TensorRTEngineHandlerNumPy from tensorrt_inference.py for further GPU optimization with TensorRT. This section will use the updated TensorRT 10.x-compatible handler (my pre-GSoC contribution), demonstrating the modern TensorRT API:
Building TRT engines from ONNX models using the updated _load_onnx() and _build_engine() functions
Running inference with execute_async_v3() and the tensor-based I/O API
FP16/INT8 quantization for additional speedup
ONNX Runtime with GPU execution provider via OnnxModelHandlerNumpy
Quantitative comparison table: CPU vs GPU (PyTorch) vs GPU (TensorRT) vs GPU (ONNX Runtime)
Notebook companion: examples/accelerator_learning_path/02_gpu_inference.ipynb

Deliverable 3: TPU Inference with LLMs
Goal: Demonstrate TPU-accelerated inference using a large language model, building on the patterns established in Deliverables 1-2.
File: examples/accelerator_learning_path/03_tpu_inference.py
What it demonstrates:
TPU setup and environment configuration (the TPU_* environment variables from dataflow_tpu_examples.ipynb)
Using VLLMCompletionsModelHandler with TPU-backed vLLM for Gemma model inference
The complete Dataflow deployment workflow:
Write the pipeline script
Build a Docker image with TPU dependencies (torch_xla, vllm-tpu)
Push to Artifact Registry
Build a Flex Template
Submit the job with TPU worker configuration
Comparison with the GPU vLLM approach from run_inference_vllm.ipynb
When to use TPU vs GPU (cost, throughput, model size considerations)
Bridge from Deliverable 2:
This deliverable reuses the same pipeline structure from Deliverable 2, showing that the business logic (pipeline DAG) stays the same -- only the infrastructure configuration changes. This is a key lesson: Beam abstracts the accelerator choice away from the pipeline logic.
Notebook companion: examples/accelerator_learning_path/03_tpu_inference.ipynb

Deliverable 4: Distributed Training with Accelerators
Goal: Demonstrate how to use Beam to orchestrate model training jobs that leverage hardware accelerators, including training multiple models in parallel.
File: examples/accelerator_learning_path/04_parallel_training.py
What it demonstrates:
Part A: Single Model Training on an Accelerator
A custom DoFn that trains a PyTorch model on GPU within its process() method
Using DoFn.setup() to initialize the GPU device and training infrastructure
Checkpointing trained model weights to GCS
Beam pipeline: Read training config -> Train model -> Save checkpoint -> Validate
Part B: Parallel Multi-Model Training
Using beam.Create() with a list of hyperparameter configurations
Each element is a training configuration (learning rate, batch size, model architecture variant)
beam.ParDo(TrainModelDoFn()) trains each configuration independently on separate workers
Each worker gets its own GPU via Dataflow's accelerator provisioning
Results are collected, compared, and the best model is selected
Part C: Train-then-Infer Pipeline
A single Beam pipeline that:
Trains multiple model variants in parallel
Evaluates each on a validation set using RunInference
Selects the best model based on metrics
Runs final inference with the winning model using KeyedModelHandler
Demonstrates Beam's strength: the entire ML lifecycle in one pipeline
Key code pattern:
class TrainModelFn(beam.DoFn):
 def setup(self):
 self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

 def process(self, config):
 model = build_model(config)
 model.to(self.device)
 train_loader = get_data_loader(config)

 for epoch in range(config['epochs']):
 for batch in train_loader:
 batch = {k: v.to(self.device) for k, v in batch.items()}
 loss = train_step(model, batch)

 # Save checkpoint to GCS
 checkpoint_path = save_checkpoint(model, config)
 yield TrainingResult(config=config, checkpoint_path=checkpoint_path, final_loss=loss)

with beam.Pipeline(options=pipeline_options) as p:
 configs = p | beam.Create([
 {'lr': 0.001, 'batch_size': 32, 'arch': 'resnet18'},
 {'lr': 0.01, 'batch_size': 64, 'arch': 'resnet34'},
 {'lr': 0.001, 'batch_size': 32, 'arch': 'resnet50'},
])

 results = configs | beam.ParDo(TrainModelFn())

 best = results | beam.CombineGlobally(SelectBestModel())

 # Run inference with the best model
 test_data | RunInference(
 PytorchModelHandlerTensor(
 state_dict_path=best,
 model_class=...,
 device='GPU'))
Notebook companion: examples/accelerator_learning_path/04_parallel_training.ipynb

Deliverable 5: Blog Post and Guide
Goal: A comprehensive blog post that serves as the narrative backbone of the learning path, published on the Apache Beam blog.
Title: "From CPU to TPU: A Practitioner's Guide to Hardware Accelerators in Apache Beam"
Structure:
Introduction -- Why accelerators matter for ML workloads; the cost and throughput implications
The Landscape -- CPU, GPU (NVIDIA T4/A100/L4), TPU (v5e/v6e); when to use each
Starting Simple -- Walk through Deliverable 1 (CPU baseline) with code and results
Adding GPU Acceleration -- Walk through Deliverable 2; show the "one-line change" and the 5-20x throughput improvement
Scaling with TPUs -- Walk through Deliverable 3; discuss TPU-specific considerations (XLA, vLLM integration, Flex Templates)
Training at Scale -- Walk through Deliverable 4; the "Beam as ML orchestrator" pattern
Production Considerations -- Cost optimization, autoscaling, monitoring, model refresh (automatic_model_refresh.ipynb pattern), error handling
What I Learned from Production -- Drawing on my CVS Health experience: practical tips on custom Docker images, Triton integration, batch size tuning, and debugging GPU OOM errors in Dataflow
Reference Card -- Quick-reference table of accelerator types, Beam model handlers, pipeline options, and Docker base images
Publishing: The blog post will be submitted as a PR to the Apache Beam website repository following the existing blog post format and review process.

Deliverable 6: Continuous Testing Infrastructure
Goal: Ensure all examples remain functional over time by integrating them into the Beam CI pipeline.
Implementation:
Convert each `.py` script into a testable module with a --dry-run / --test flag that:
Uses DirectRunner instead of DataflowRunner
Uses a small synthetic dataset
Validates pipeline construction and output format
Runs without GPU/TPU (tests pipeline logic, not hardware)
Add integration test configurations following the existing pattern in .github/workflows/load-tests-pipeline-options/:
beam_Accelerator_Learning_Path_CPU_Baseline.txt
beam_Accelerator_Learning_Path_GPU_Inference.txt
beam_Accelerator_Learning_Path_TPU_Inference.txt
beam_Accelerator_Learning_Path_Parallel_Training.txt
Add a GitHub Actions workflow that:
Runs the --dry-run mode on every PR that touches files in examples/accelerator_learning_path/
Runs the full GPU integration test on a weekly schedule (similar to the existing inference benchmarks)
Reports results to BigQuery for tracking (following the existing --publish_to_big_query pattern)
Notebook validation: Use nbconvert --execute with a test kernel to validate notebook cells execute without errors (limited to non-cloud cells).

File Structure
examples/accelerator_learning_path/
 README.md # Overview and prerequisites
 01_cpu_baseline.py # Deliverable 1: CPU inference script
 01_cpu_baseline.ipynb # Deliverable 1: Notebook companion
 02_gpu_inference.py # Deliverable 2: GPU inference script
 02_gpu_inference.ipynb # Deliverable 2: Notebook companion
 02_gpu_inference_Dockerfile # Dockerfile for GPU Dataflow workers
 03_tpu_inference.py # Deliverable 3: TPU inference script
 03_tpu_inference.ipynb # Deliverable 3: Notebook companion
 03_tpu_inference_Dockerfile # Dockerfile for TPU Dataflow workers
 04_parallel_training.py # Deliverable 4: Multi-model training script
 04_parallel_training.ipynb # Deliverable 4: Notebook companion
 04_parallel_training_Dockerfile # Dockerfile for training workers
 requirements.txt # Python dependencies
 test_examples.py # Unit tests for dry-run mode
 conftest.py # pytest fixtures (synthetic data, mock models)
 utils/
 timing.py # Throughput measurement utilities
 visualization.py # Notebook visualization helpers

Pre-GSoC Contributions (Planned Before Acceptance)
To demonstrate commitment and build contributor credibility, I plan to submit the following before the GSoC acceptance period:
1. TensorRT 10.x Compatibility Update (PR to apache/beam)
Update sdks/python/apache_beam/ml/inference/tensorrt_inference.py to support TensorRT 10.x while maintaining backward compatibility with TRT 8.x/9.x. Key changes:
	Deprecated API (TRT 8.x/9.x)
	New API (TRT 10.x)
	Location

	engine.num_bindings
	engine.num_io_tensors
	Line 132

	engine.get_binding_name(i)
	engine.get_tensor_name(i)
	Line 133

	engine.get_binding_dtype(i)
	engine.get_tensor_dtype(name)
	Line 134

	engine.get_binding_shape(i)
	engine.get_tensor_shape(name)
	Line 135

	engine.binding_is_input(i)
	engine.get_tensor_mode(name)
	Line 147

	context.execute_async_v2()
	context.execute_async_v3()
	Line 204

	trt.volume(shape)
	np.prod(shape) or manual calculation
	Line 136

	EXPLICIT_BATCH flag
	Removed (default in TRT 10.x)
	Line 65

The update will use runtime version detection (trt.__version__) to select the correct API path, ensuring users on older TRT versions are not broken.
2. Sample Code Contribution
I will contribute anonymized/sanitized sample code from my production ML inference pipelines at CVS Health demonstrating:
Custom ModelHandler implementation for Triton Inference Server
GPU-accelerated PyTorch inference pipeline on Dataflow with T4 GPUs
Multi-model inference with KeyedModelHandler routing
These can serve as additional reference material for the learning path examples.

Timeline
Community Bonding Period (May 1 - May 26)
Introduce myself on dev@beam.apache.org mailing list
Set up development environment: clone repo, build from source, run existing tests
Run all existing beam-ml notebooks end-to-end on Colab to understand current state
Study the RunInference codebase in depth (base.py, all model handlers)
Submit 1-2 small PRs (documentation fixes, minor improvements) to establish contributor track record
Weekly sync with mentors to finalize scope and review design decisions
Set up GCP project with GPU and TPU quota for integration testing
Phase 1 (May 27 - July 14) -- Weeks 1-7
	Week
	Deliverable
	Details

	1-2
	Deliverable 1
	Build CPU baseline script and notebook. Implement timing harness. Test with ResNet-50 on DirectRunner.

	3-4
	Deliverable 2
	Build GPU inference script and notebook. Create Dockerfile. Test locally on Colab GPU and on Dataflow with T4. Add TensorRT comparison.

	5-6
	Deliverable 3
	Build TPU inference script and notebook. Create Dockerfile with torch_xla / vllm-tpu. Test on Dataflow with v5e TPU.

	7
	Midterm Buffer
	Address mentor feedback on Deliverables 1-3. Submit PRs. Fix issues found during testing. Write integration test configs.

Midterm Evaluation Checkpoint:
Deliverables 1, 2, 3 complete with PRs submitted
All three scripts tested end-to-end on Dataflow
Comparison data collected: CPU vs GPU vs TPU throughput
Phase 2 (July 14 - August 25) -- Weeks 8-12
	Week
	Deliverable
	Details

	8-9
	Deliverable 4
	Build parallel training script (Parts A, B, C). Test single-model GPU training, then multi-model parallel training on Dataflow.

	10
	Deliverable 5
	Write the blog post. Incorporate all benchmark data. Get mentor review.

	11
	Deliverable 6
	Build CI infrastructure: dry-run mode, GitHub Actions workflow, integration test pipeline options.

	12
	Final Buffer
	Address all code review feedback. Final testing pass. Submit remaining PRs. Final blog post edits.

Final Evaluation Checkpoint:
All 6 deliverables complete
All PRs merged or in active review
Blog post published or submitted for publication
CI running green for all examples

Technical Deep Dive: Key Architecture Decisions
Why ResNet-50 as the Primary Model
The existing examples use toy models (y = 5x linear regression) that don't show meaningful accelerator benefits. A linear regression model with 2 parameters runs faster on CPU than GPU due to data transfer overhead. ResNet-50 (25.6M parameters) is large enough that GPU acceleration provides 10-20x throughput improvement, making the learning path's message concrete and measurable. It's also small enough to fit on a free Colab T4 GPU (16GB VRAM).
Why Both Scripts and Notebooks
Scripts are the production deployment format -- they can be version controlled, linted, tested, and deployed as Flex Templates. Notebooks are the learning format -- they allow inline visualization, step-by-step execution, and experimentation. Providing both ensures the learning path serves both audiences.
Training in Beam: Design Considerations
Training in Beam is less common than inference, but it maps naturally when you need to train multiple independent models. Each training job is an element in a PCollection, and Beam's parallelism distributes them across workers. This is equivalent to what tools like Ray Tune or Optuna do for hyperparameter search, but with Beam's exactly-once semantics and managed infrastructure.
The key constraint: Beam DoFns should be stateless across elements. Training state (model weights, optimizer state) must be fully contained within a single process() call. This works because each hyperparameter configuration is an independent training run.
Accelerator Selection Guide (Included in Blog Post)
	Workload
	Recommended Accelerator
	Beam Model Handler
	Why

	Image classification (batch)
	GPU (T4/L4)
	PytorchModelHandlerTensor(device='GPU')
	Good balance of cost and throughput

	LLM inference (batch)
	TPU v6e or GPU A100
	VLLMCompletionsModelHandler
	Memory capacity for large models

	LLM inference (streaming)
	GPU L4 + vLLM
	VLLMChatModelHandler
	Low-latency responses

	High-throughput inference
	GPU + TensorRT
	TensorRTEngineHandlerNumPy
	Optimized engine for specific hardware

	Training (small models)
	GPU T4
	Custom DoFn
	Cost-effective for models <1B params

	Training (large models)
	TPU v5e pod
	Custom DoFn with torch_xla
	Distributed training across TPU chips

How This Differs from Existing Examples
	Aspect
	Existing Examples
	This Proposal

	Format
	Notebooks only (44 .ipynb files)
	Scripts + Notebooks

	Progression
	Standalone, unlinked examples
	Numbered learning path (01 -> 02 -> 03 -> 04)

	Models
	Toy models (y=5x) or cloud-only (require GCP setup)
	Real models that run locally first, then scale to cloud

	Training
	Zero training examples
	Full training pipeline with parallel multi-model support

	Performance comparison
	No quantitative comparisons
	Built-in timing and throughput metrics across CPU/GPU/TPU

	Continuous testing
	No automated notebook testing
	Dry-run mode + CI integration + weekly integration tests

	Documentation
	Inline notebook comments
	Comprehensive blog post + inline comments

Relevant Prior Art and References
examples/notebooks/beam-ml/dataflow_tpu_examples.ipynb -- TPU examples (Deliverable 3 builds on this)
examples/notebooks/beam-ml/run_inference_vllm.ipynb -- vLLM GPU examples (Deliverable 2-3 build on this)
examples/notebooks/beam-ml/run_inference_pytorch.ipynb -- PyTorch patterns including multi-model (Deliverable 1-2 build on this)
examples/notebooks/beam-ml/per_key_models.ipynb -- Per-key model routing (Deliverable 4 uses this pattern)
sdks/python/apache_beam/ml/inference/base.py -- Core ModelHandler and RunInference API
sdks/python/apache_beam/ml/inference/pytorch_inference.py -- PyTorch handler with GPU support (device='GPU')
sdks/python/apache_beam/ml/inference/vllm_inference.py -- vLLM handler with TPU/GPU support
sdks/python/apache_beam/ml/inference/tensorrt_inference.py -- TensorRT handler for GPU optimization
.github/workflows/load-tests-pipeline-options/ -- Existing CI benchmark configurations

Communication and Availability
Availability: I can commit 25-30 hours per week to this project, totaling ~350 hours across the program duration.
Communication: I will provide weekly status updates on the Beam dev mailing list, participate in the biweekly Beam ML SIG meetings, and maintain a running design document shared with mentors.
Code reviews: I will submit PRs early and often (one per deliverable minimum), responding to review feedback within 24 hours.
Timezone flexibility: I am available for synchronous calls during US business hours and can accommodate European time zones for mentor meetings if needed.

Why I Am a Strong Candidate
I use this exact stack in production. This is not a learning exercise for me -- I build and operate Beam + GPU inference pipelines at CVS Health daily. The proposal reflects patterns I have already validated at scale. I can provide working code samples from these production pipelines to demonstrate proficiency.
I have solved the "not natively supported" problem. My Triton Inference Server POC at CVS Health required understanding the ModelHandler abstraction deeply enough to extend it for a completely new inference server. This project asks for the same kind of extension work (training DoFns, new example patterns).
I have already written the educational material. The ML Inference Cookbook I authored at CVS Health serves the same purpose as this project's blog post deliverable -- taking ML engineers from zero to production with Beam and accelerators. I know how to structure technical learning material that works.
I am already contributing to Beam's accelerator support. My in-progress TensorRT 10.x compatibility update demonstrates that I can work on the Beam ML SDK internals, not just the examples layer. This pre-GSoC contribution proves I can navigate the codebase, follow the project's code style, and submit mergeable PRs.
I understand the user's journey. I remember the learning curve of going from CPU-only Beam to GPU-accelerated Dataflow. The gaps I identified in this proposal are the exact ones I encountered and had to solve through trial and error. This learning path would have saved me weeks.
I can write production-quality code *and* clear documentation. The blog post and examples will be written by someone who has explained these concepts to teams across CVS Health's ML organization and can bridge the gap between Beam's API reference and practical usage.

Appendix: Links
Apache Beam ML Overview: https://beam.apache.org/documentation/ml/overview/
RunInference API Docs: https://beam.apache.org/releases/pydoc/current/apache_beam.ml.inference.base.html
Dataflow GPU Guide: https://cloud.google.com/dataflow/docs/gpu/use-gpus
Dataflow TPU Guide: https://cloud.google.com/dataflow/docs/tpu/use-tpus
Existing TPU Examples: https://github.com/apache/beam/blob/master/examples/notebooks/beam-ml/dataflow_tpu_examples.ipynb
GSoC Project Idea: https://beam.apache.org/contribute/gsoc/
