thanks a lot,I solve this。
在 2016/8/17 0:53, Eason 写道:
hi jinzhu,
whether this happen on multiple instance loading the same table?
currently ,it is no support concurrent load on same table.
for this exception
1.please check if any locks are created under system temp folder
with<databasename>/<tablename>/lockfile, if it exists please delete.
2.try to change the lock ype:
carbon.lock.type = ZOOKEEPERLOCK Regards,
Eason
在 2016年08月12日 14:25, 金铸 写道:
hi : /usr/hdp/2.4.0.0-169/spark/bin/spark-shell --master yarn-client
--jars
/opt/incubator-carbondata/assembly/target/scala-2.10/carbondata_2.10-0.1.0-incubating-SNAPSHOT-shade-hadoop2.2.0.jar,/usr/hdp/2.4.0.0-169/spark/lib/datanucleus-api-jdo-3.2.6.jar,/usr/hdp/2.4.0.0-169/spark/lib/datanucleus-rdbms-3.2.9.jar,/usr/hdp/2.4.0.0-169/spark/lib/datanucleus-core-3.2.10.jar,/opt//mysql-connector-java-5.1.37.jar
scala>import org.apache.spark.sql.CarbonContext scala>import
java.io.File scala>import org.apache.hadoop.hive.conf.HiveConf
scala>val cc = new CarbonContext(sc,
"hdfs://hadoop01/data/carbondata01/store")
scala>cc.setConf("hive.metastore.warehouse.dir",
"/apps/hive/warehouse")
scala>cc.setConf(HiveConf.ConfVars.HIVECHECKFILEFORMAT.varname,
"false")
scala>cc.setConf("carbon.kettle.home","/usr/hdp/2.4.0.0-169/spark/carbonlib/carbonplugins")
scala>
cc.setConf("carbon.kettle.home","/usr/hdp/2.4.0.0-169/spark/carbonlib/carbonplugins")
scala> cc.sql(s"load data local inpath 'hdfs://hadoop01/sample.csv'
into table t4 options('FILEHEADER'='id,name,city,age')") INFO 12-08
14:21:24,461 - main Query [LOAD DATA LOCAL INPATH
'HDFS://HADOOP01/SAMPLE.CSV' INTO TABLE T4
OPTIONS('FILEHEADER'='ID,NAME,CITY,AGE')] INFO 12-08 14:21:39,475 -
Table MetaData Unlocked Successfully after data load
java.lang.RuntimeException: Table is locked for updation. Please try
after some time at scala.sys.package$.error(package.scala:27)
at
org.apache.spark.sql.execution.command.LoadTable.run(carbonTableSchema.scala:1049)
at
org.apache.spark.sql.execution.ExecutedCommand.sideEffectResult$lzycompute(commands.scala:58)
at
org.apache.spark.sql.execution.ExecutedCommand.sideEffectResult(commands.scala:56)
at
org.apache.spark.sql.execution.ExecutedCommand.doExecute(commands.scala:70)
at
org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:132)
at
org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:130)
at
org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)
thanks a lot
---------------------------------------------------------------------------------------------------
Confidentiality Notice: The information contained in this e-mail and
any accompanying attachment(s) is intended only for the use of the
intended recipient and may be confidential and/or privileged of
Neusoft Corporation, its subsidiaries and/or its affiliates. If any
reader of this communication is not the intended recipient,
unauthorized use, forwarding, printing, storing, disclosure or
copying is strictly prohibited, and may be unlawful.If you have
received this communication in error,please immediately notify the
sender by return e-mail, and delete the original message and all
copies from your system. Thank you.
---------------------------------------------------------------------------------------------------
---------------------------------------------------------------------------------------------------
Confidentiality Notice: The information contained in this e-mail and any
accompanying attachment(s)
is intended only for the use of the intended recipient and may be confidential
and/or privileged of
Neusoft Corporation, its subsidiaries and/or its affiliates. If any reader of
this communication is
not the intended recipient, unauthorized use, forwarding, printing, storing,
disclosure or copying
is strictly prohibited, and may be unlawful.If you have received this
communication in error,please
immediately notify the sender by return e-mail, and delete the original message
and all copies from
your system. Thank you.
---------------------------------------------------------------------------------------------------