Hi community, Sorry for the incorrect formatting of previous post. I corrected it in this post.
Since CarbonData has global dictionary feature, currently when loading data to CarbonData, it requires two times of scan of the input data. First scan is to generate dictionary, second scan to do actual data encoding and write to carbon files. Obviously, this approach is simple, but this approach has at least two problem: 1. involve unnecessary IO read. 2. need two jobs for MapReduce application to write carbon files To solve this, we need single-pass data loading solution, as discussed earlier, and now community is developing it (CARBONDATA-401, PR310). In this post, I want to discuss the OutputFormat part, I think there will be two OutputFormat for CarbonData. 1. DictionaryOutputFormat, which is used for the global dictionary generation. (This should be extracted from CarbonColumnDictGeneratRDD) 2. TableOutputFormat, which is used for writing CarbonData files. When carbon has these output formats, it is more easier to integrate with compute framework like spark, hive, mapreduce. And in order to make data loading faster, user can choose different solution based on its scenario as following: Scenario 1: First load is small (can not cover most dictionary) 1) for first few loads run two jobs that use DictionaryOutputFormat and TableOutputFormat accordingly 2) after some loads It becomes like Scenario 2, so user can just run one job that use TableOutputFormat with single-pass support Scenario 2: First load is big (can cover most dictionary) 1) for first load If the bigest column cardinality > 10K, run two jobs using two output formats. Otherwise, run one job that use TableOutputFormat with single-pass support 2) for subsequent load Run one job that use TableOutputFormat with single-pass support What do yo think this idea? Regards, Jacky -- View this message in context: http://apache-carbondata-mailing-list-archive.1130556.n5.nabble.com/DISCUSSION-CarbonData-loading-solution-discussion-tp4490p4491.html Sent from the Apache CarbonData Mailing List archive mailing list archive at Nabble.com.
