[ https://issues.apache.org/jira/browse/CRUNCH-485?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=14267428#comment-14267428 ]
Tycho Lamerigts commented on CRUNCH-485: ---------------------------------------- I did indeed try requireSortedKeys() but it merely sorts the results *after* grouping. In other words, the grouping is not affected and is still incorrect. Note that this is not about sorting per se, the groupByKey needs to determine if key objects are _equal_ and Avro objects use sort order to determine equality too. See example below. Crunch-on-MapReduce takes this into account, whereas Crunch-on-Spark doesn't. I do not know if the difference is intentional, but it definitely is inconsistent and I would argue that Crunch-on-MapReduce behavior is the desired behavior. {code} package example; import com.google.common.collect.Lists; import org.apache.avro.Schema; import org.apache.avro.Schema.Field; import org.apache.avro.Schema.Field.Order; import org.apache.avro.Schema.Type; import org.apache.avro.generic.GenericData.Record; import org.apache.avro.generic.GenericRecordBuilder; import org.codehaus.jackson.node.JsonNodeFactory; import org.junit.Test; import static org.junit.Assert.assertEquals; public class AvroEqualsTest { @Test public void fieldsWithIgnoredSortOrderAreNotUsedInEquals() { Schema mySchema = Schema.createRecord(Lists.newArrayList(new Field("field1", Schema.create(Type.STRING), null, JsonNodeFactory.instance.textNode(""), Order.ASCENDING), new Field("field2", Schema.create(Type.STRING), null, JsonNodeFactory.instance.textNode(""), Order.IGNORE))); GenericRecordBuilder myGRB = new GenericRecordBuilder(mySchema); Record myRecord1 = myGRB.set("field1", "hello").set("field2", "world").build(); Record myRecord2 = myGRB.set("field1", "hello").set("field2", "there").build(); assertEquals(myRecord1, myRecord2); } } {code} > groupByKey on Spark incorrect if key is Avro record with defined sort order > --------------------------------------------------------------------------- > > Key: CRUNCH-485 > URL: https://issues.apache.org/jira/browse/CRUNCH-485 > Project: Crunch > Issue Type: Bug > Components: Core > Affects Versions: 0.11.0 > Reporter: Tycho Lamerigts > Assignee: Josh Wills > > GroupByKey on Spark is incorrect if the key type is an Avro record with > defined sort order (http://avro.apache.org/docs/1.7.7/spec.html#order). > Instead, it serializes the entire avro record to a binary blob (byte array) > and groups identical blobs. This is wrong. By contrast, groupByKey on > MapReduce works as expected, so it does take Avro's sort order into account. > The culprit is probably the following code from > org.apache.crunch.impl.spark.collect.PGroupedTableImpl#getJavaRDDLikeInternal > {code} > groupedRDD = parentRDD.map(new PairMapFunction(ptype.getOutputMapFn(), > runtime.getRuntimeContext())) > .mapToPair(new MapOutputFunction(keySerde, valueSerde)) > .groupByKey(numPartitions); > {code} > where MapOutputFunction simply converts the entire key object to a binary > blob, without taking sort order into account. -- This message was sent by Atlassian JIRA (v6.3.4#6332)