[
https://issues.apache.org/jira/browse/DATALAB-2342?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
]
Vira Vitanska updated DATALAB-2342:
-----------------------------------
Description:
Total executor memory = total RAM per instance / number of executors per
instance
Spark.executors.memory = total executor memory * 0.85
Spark.driver.memory = spark.executors.memory
According to
[https://aws.amazon.com/blogs/big-data/best-practices-for-successfully-managing-memory-for-apache-spark-applications-on-amazon-emr/]
was:
Total executor memory = total RAM per instance / number of executors per
instance
Spark.executors.memory = total executor memory * 0.90
Spark.driver.memory = spark.executors.memory
According to
[https://aws.amazon.com/blogs/big-data/best-practices-for-successfully-managing-memory-for-apache-spark-applications-on-amazon-emr/]
> [Notebook]: Allocate spark driver/spark executor memory according to the Best
> practice
> --------------------------------------------------------------------------------------
>
> Key: DATALAB-2342
> URL: https://issues.apache.org/jira/browse/DATALAB-2342
> Project: Apache DataLab
> Issue Type: Task
> Security Level: Public(Regular Issues)
> Components: DataLab Main
> Reporter: Vira Vitanska
> Assignee: Mykola Bodnar
> Priority: Major
> Labels: AWS, AZURE, Debian, DevOps, GCP, RedHat
> Fix For: v.2.5
>
> Attachments: image-2021-07-01-11-00-04-390.png
>
>
> Total executor memory = total RAM per instance / number of executors per
> instance
> Spark.executors.memory = total executor memory * 0.85
> Spark.driver.memory = spark.executors.memory
> According to
> [https://aws.amazon.com/blogs/big-data/best-practices-for-successfully-managing-memory-for-apache-spark-applications-on-amazon-emr/]
>
--
This message was sent by Atlassian Jira
(v8.20.10#820010)
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]