sorry, The description just now is wrong. Only conditional nodes and
delayed nodes belong to relationships,
and dependent nodes belong to tasks.

—

不好意思,刚才的描述有误,只有条件节点、延迟节点是属于关系的,依赖节点属于任务


--------------------
DolphinScheduler(Incubator) Commtter
Hemin Wen  温合民
[email protected]
--------------------


Hemin Wen <[email protected]> 于2020年11月30日周一 上午9:56写道:

> According to the classification of nodes in the design plan, only
> dependent nodes and condition nodes belong to the relationship, which is
> stored in the condition_type and condition_params fields. The UI display
> can generate dependent nodes and condition nodes based on the values of
> these two fields in the relationship table, so UI is consistent with the
> current
> The current workflow in the front-end display supports automatic
> formatting of node coordinates, so my idea is that there is no need to
> store the location field. This depends on the front-end interaction design,
> and it can be saved if necessary.
>
> ---
>
> 根据设计方案中对节点的分类,只有依赖节点和条件节点数属于关系的,也就是保存在condition_type和condition_params字段中,
> UI展示可以根据关系表中这两个字段的值生成依赖节点和条件节点,所以UI和当前是一致的
>
> 当前工作流在前端展示是支持自动格式化节点坐标的,所以我的想法是不需要存储location字段的,
> 这里要看前端交互设计,如果需要也可以保存
>
>
> --------------------
> DolphinScheduler(Incubator) Commtter
> Hemin Wen  温合民
> [email protected]
> --------------------
>
>
> boyi <[email protected]> 于2020年11月28日周六 下午10:21写道:
>
>> hi:
>>
>>
>>
>>
>> re : 2.The front-end UI is the same as it is now, and the connection does
>> not
>> require logical operation
>>
>>
>> > The t_ds_task_relation table not only identifies the connection
>> relationship, but also has business implications, such as”
>> condition_params"  How to display this in the front UI
>>
>>
>>
>>
>> In addition,
>> there is no field in the task table “ t_ds_task_definithon", which is
>> used to store the coordinate information of the front-end DAG diagram. It
>> is used to describe the position of the task in the DAG canvas
>>
>>
>>
>>
>>
>>
>> ——————
>>
>>
>>
>>
>> re : 2.前端UI和现在一样,连线是不需要逻辑操作的,只是做UI和数据的映射就行了
>>
>>
>>
>> t_ds_task_relation表不仅标识连线关系,还具备业务含义,比如condition_params字段. 这个在前端ui 是如何展示.
>>
>>
>>
>>
>> 另外,
>> 在任务表t_ds_task_definithon还缺少”location"字段,用于存放前端DAG图的坐标信息.
>> 用于描述该任务在dag画布中的位置.
>>
>>
>> --------------------------------------
>> BoYi ZhangE-mail : [email protected]
>>
>> --------- Forwarded Message ---------
>>
>> From: Hemin Wen <[email protected]>
>> Date: 11/28/2020 20:32
>> To: dev <[email protected]>
>> Subject: Re: [DISCUSS] Process definithon json split design
>> 1.En, this point, I really didn't think of that.
>> I don't know why it was designed like this before, I think the purpose of
>> editing a workflow instance is to update the workflow definition.
>> If so, Modifying a workflow instance is the same as modifying a workflow
>> definition.
>>
>> 2.The front-end UI is the same as it is now, and the connection does not
>> require logical operation
>>
>> 3.Yes, This is the current design.
>>
>> ---
>>
>> 1.嗯,这一点,我确实没有想到
>>
>> 我不知道之前为什么这样设计,我认为编辑工作流实例的目的就是为了更新工作流定义,我们内部一直都是这样用的,没有仅更新工作流实例的操作(这也会导致实例和定义分叉)
>> 所以,如果这样的话,更新工作流实例和更新工作流定义是一样的处理方式,或者关闭更新工作流实例的口子
>>
>> 2.前端UI和现在一样,连线是不需要逻辑操作的,只是做UI和数据的映射就行了
>>
>> 3.是的,当前就是这样设计的
>>
>>
>> --------------------
>> DolphinScheduler(Incubator) Commtter
>> Hemin Wen  温合民
>> [email protected]
>> --------------------
>>
>>
>> boyi <[email protected]> 于2020年11月28日周六 下午3:36写道:
>>
>> hi:
>>
>>
>> Three questions need to be confirmed:
>>
>>
>> 1. If there is a field in the workflow instance to record the version
>> log relationship, if the instance is edited, a new data will be added to
>> the version log table directly??
>> 2. I think the task execution logic is saved in the connection, which
>> needs the support of the front-end UI. The connection of the current
>> version does not have the function of logical operation. It needs to
>> confirm with the front-end whether it can be implemented
>> 3. Whether the task details can be obtained by the worker, which needs
>> to change the interaction logic between the master and the worker. The
>> underlying communication mechanism needs to be moved. At present, the
>> master is being reconstructed. If it is possible, it is better to obtain
>> the task details query through the worker. This can reduce the pressure of
>> master communication
>>
>>
>> ---
>>
>>
>> 有三个问题需要确认一下:
>> 1. 工作流实例里面假设有一个字段记录版本日志关系的话, 如果编辑这个实例了,是直接在版本日志表中新增一条数据??
>> 2. 我认为在连线里面保存了任务执行逻辑,这个需要前端UI的支持,目前版本的连线是不具备逻辑操作的功能. 这个需要跟前端确认一下能否实现
>> 3.任务详情的获取能否交由worker进行数据库, 这需要更改master和worker之间的交互逻辑.需要动底层的通讯机制.
>> 目前master正在重构,如果可以的话,最好做到把任务详情的查询通过worker进行获取. 这样就可以减轻master通讯的压力.
>>
>>
>> --------------------------------------
>> BoYi ZhangE-mail : [email protected]
>> On 11/27/2020 17:44,Hemin Wen<[email protected]> wrote:
>> Plan: Master is only responsible for DAG scheduling. When a job is
>> executed, it sends job code to worker, who is responsible for querying job
>> details and executing job
>> Master only saves workflow data encoding and version and relational data
>> encoding and version when scheduling workflow
>> Worker saves the code and version of the job during execution
>> Instance data does not need to store detailed information. There are
>> version log tables of workflow, relationship, and job in the design plan,
>> and version log tables can be associated when viewing.
>>
>> Plan: Master performs DAG scheduling, queries job details when a job is
>> executed, and then sends it to worker to execute job
>> The reason for not one-time query here is that when there are too many
>> jobs, one-time loading will consume more memory
>>
>> ------------------------------------------------------------------------
>> ------------------------------------------------
>>
>> 方案:Master只负责DAG调度,执行到某个作业时,发送作业编码到Worker,Worker负责查询作业详情并执行作业
>> Master只在调度工作流的时候保存工作流数据编码、版本和关系数据编码、版本
>> Worker在执行时保存作业的编码、版本
>> 实例数据不需要存储详细信息,设计方案中有工作流、关系、作业的版本日志表,查看时可以关联版本日志表
>>
>>
>> 方案:Master执行DAG调度,执行到某个作业时查询作业详情,然后发送给Worker执行作业
>> 这里不一次性查询的原因是,作业非常多时,一次性加载会有一定的内存消耗
>>
>>
>> --------------------
>> DolphinScheduler(Incubator) Commtter
>> Hemin Wen  温合民
>> [email protected]
>> --------------------
>>
>>
>> boyi <[email protected]> 于2020年11月27日周五 下午5:04写道:
>>
>> hi:
>>
>>
>>
>>
>> Both of them have defects :
>>
>>
>> -Master is only responsible for DAG scheduling. When a job is executed, it
>> sends job code to worker, who is responsible for querying job details and
>> executing job
>>
>>
>> When the master saves the workflow instance, it needs to save the
>> snapshot information of the current workflow
>>
>>
>> This still needs to join a table query or two-step query
>>
>>
>> The master will still query the task details
>>
>>
>> When the worker executes, it will still query the task details
>>
>>
>> It is unreasonable to query master and worker twice
>>
>>
>>
>>
>>
>>
>>
>>
>> -Master performs DAG scheduling, queries job details when a job is
>> executed, and then sends it to worker to execute job
>>
>>
>> Master is used to query the task details. Why not get all the workflow
>> definitions at one time
>>
>>
>> For example, if there are 1000 tasks in a workflow, you should query 1000
>> tasks at a time instead of querying the database 1000 times
>>
>>
>> However, the performance of the database will be consumed due to the
>> splitting into three tables
>>
>>
>> Test report support is required, such as the impact on the database and
>> the delay of tasks
>> —————————————————————
>>
>>
>> - Master只负责DAG调度,执行到某个作业时,发送作业编码到Worker,Worker负责查询作业详情并执行作业
>> master在保存工作流实例的时候,需要保存当前工作流的快照信息.
>> 这个还是需要联表查询或者分成两步查询.
>> master 依旧会查询任务详情.
>> worker执行的时候还是会查询任务详情.
>> master 和worker 查询两遍这是不合理的.
>>
>>
>>
>>
>> - Master执行DAG调度,执行到某个作业时查询作业详情,然后发送给Worker执行作业
>> 统一用master查询任务详情,为什么不一次性把所有的工作流定义全部获取,而是分开查.
>> 比如一个工作流里面有1000个任务, 应该是一次性把1000个任务查询出来,而不是查询数据库1000次.
>> 但是无论怎样,因为拆分成三个表,对数据库的性能都存在消耗
>> 都需要测试报告的支持.比如对数据库的影响和任务的延迟有多大影响.
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>> --------------------------------------
>> BoYi ZhangE-mail : [email protected]
>> On 11/27/2020 15:53,Hemin Wen<[email protected]> wrote:
>> There are two solutions for the query timing of job details:
>> - The Master is only responsible for DAG scheduling. When a job is
>> executed, it sends the job code to the Worker, and the Worker is
>> responsible for querying the job details and executing the job
>> - The Master executes DAG scheduling, queries the job details when a job
>> is
>> executed, and then sends it to the Worker to execute the job
>>
>>
>>
>>
>> ---------------------------------------------------------------------------------------------------------
>>
>> 针对作业详情数据的查询时点,有两种方案:
>>
>> - Master只负责DAG调度,执行到某个作业时,发送作业编码到Worker,Worker负责查询作业详情并执行作业
>> - Master执行DAG调度,执行到某个作业时查询作业详情,然后发送给Worker执行作业
>>
>> --------------------
>> DolphinScheduler(Incubator) Commtter
>> Hemin Wen  温合民
>> [email protected]
>> --------------------
>>
>>
>> Hemin Wen <[email protected]> 于2020年11月25日周三 上午10:01写道:
>>
>> Hi!
>>
>> About json splitting of workflow definition, The following is the design
>> plan for splitting three tables.
>>
>> Everyone can discuss together.
>>
>>
>>
>>
>>
>> --------------------------------------------------------------------------------------------------------------
>>
>> ## 1. Currently
>> The workflow definition of the current DS system includes task definition
>> data and task relationship data. In the design of the database, task data
>> and task relationship data are stored in the workflow as a string type
>> field (process_definition_json) Definition table
>> (t_ds_process_definition).
>>
>> With the increase of workflow and tasks, the following problems will
>> arise:
>>
>> -Task data, relational data and workflow data are coupled together, which
>> is not friendly to the scenario of single-task scheduling. The task must
>> be
>> created in the workflow
>>
>> -The task cannot be reused because the task is created in the workflow
>>
>> -The maintenance cost is high. If you move the whole body and modify any
>> task, you need to update the data in the workflow as a whole, and it also
>> increases the log cost
>>
>> -When there are many tasks in the workflow, the efficiency of global
>> search and statistical analysis is low, such as querying which tasks use
>> which data source
>>
>> -Poor scalability, for example, the realization of blood relationship
>> function in the future will only lead to more and more bloated workflow
>> definitions
>>
>> -Tasks, relationships, and workflow boundaries are blurred. Condition
>> nodes and delay nodes are also regarded as a task, which is actually a
>> combination of relationships and conditions
>>
>> Based on the above pain points, we need to redefine the business
>> boundaries of tasks, relationships, and workflows, and redesign their data
>> structures based on this
>>
>> ## 2. Design Ideas
>>
>> ### 2.1 Workflow, relation, job
>>
>> First of all, we set aside the current implementation and clarify the
>> business boundaries of tasks (the subsequent description is changed to
>> jobs), relationships, and workflows, and how to decouple
>>
>> -Job: the task that the scheduling system really needs to execute, the job
>> only contains the data and resources needed to execute the job
>> -relation: the relationship between the job and the job and the execution
>> conditions, including the execution relationship (after A completes,
>> execute B) and execution conditions (after A completes and succeeds,
>> execute B; after A completes and fails, execute C; A completes 30 After
>> minutes, execute D)
>> -Workflow: the carrier of a set of relationships, the workflow only saves
>> the relationships between jobs (DAG is a display form of workflow, a way
>> to
>> create relationships)
>>
>> Combined with the functions supported by the current DS, we can make a
>> classification
>>
>> -Job: Dependency check, sub-process, Shell, stored procedure, Sql, Spark,
>> Flink, MR, Python, Http, DataX, Sqoop
>> -Relationship: serial execution, parallel execution, aggregate execution,
>> conditional branch, delayed execution
>> -Workflow: the boundary of scheduling execution, including a set of
>> relationships
>>
>> #### 2.1.1 Further refinement
>>
>> The job definition data is not much different from the current job
>> definition data. Both are composed of public fields and custom fields. You
>> only need to remove the fields related to the relationship.
>>
>> The workflow definition data is not much different from the current
>> workflow definition data, just remove the json field.
>>
>> Relational data, we can abstract into two nodes and one path according to
>> classification. The node is the job, and the path includes the conditional
>> rules that need to be met from the pre-node to the post-node. The
>> conditional rules include: unconditional, judgment condition, and delay
>> condition.
>>
>> ### 2.2 Version Management
>>
>> We clarify the business boundaries. After decoupling, they become a
>> reference relationship. The workflow and the relationship are one-to-many,
>> and the relationship and the job are one-to-many. Not only is the
>> definition of data, we also need to consider instance data. Every time a
>> workflow is scheduled and executed, a workflow instance will be generated.
>> Jobs and workflows can be changed, and the workflow instance must support
>> viewing, rerun, recovery failure, etc. . This requires the introduction of
>> version management of the definition data. Every time workflow,
>> relationship, and job changes need to save old version data and generate
>> new version data.
>>
>> So the design idea here is:
>>
>> To define data, you need to add a version field
>>
>> The definition table needs to add the corresponding log table
>>
>> When creating definition data, double write to the definition table and
>> log table. When modifying the definition data, save the modified version
>> to
>> the log table
>>
>> There is no need to save version information in the reference data of the
>> definition table (refer to the latest version), and the version
>> information
>> at the time of execution is saved in the instance data
>>
>> ### 2.3 Coding Design
>>
>> This also involves the import and export of workflow and job definition
>> data. According to the previous community discussion, a coding scheme
>> needs
>> to be introduced. Each piece of data in workflow, relationship, and job
>> will have a unique code. Related Issues: https://github
>> .com/apache/incubator-dolphinscheduler/issues/3820
>>
>> Resource: RESOURCE_xxx
>>
>> Task: TASK_xxx
>>
>> Relation: RELATION_xxx
>>
>> Workflow: PROCESS_xxx
>>
>> Project: PROJECT_xxx
>>
>> ## 3. Design plan
>>
>> ### 3.1 Table model design
>>
>> #### 3.1.1 Job definition table: t_ds_task_definithon
>>
>> | Column Name | Description |
>> | ----------------------- | -------------- |
>> | id | Self-incrementing ID |
>> | union_code | unique code |
>> | version | Version |
>> | name | Job name |
>> | description | description |
>> | task_type | Job type |
>> | task_params | Job custom parameters |
>> | run_flag | Run flag |
>> | task_priority | Job priority |
>> | worker_group | worker group |
>> | fail_retry_times | Number of failed retries |
>> | fail_retry_interval | Failure retry interval |
>> | timeout_flag | Timeout flag |
>> | timeout_notify_strategy | Timeout notification strategy |
>> | timeout_duration | Timeout duration |
>> | create_time | Creation time |
>> | update_time | Modification time |
>>
>> #### 3.1.2 Task relation table: t_ds_task_relation
>>
>> | Column Name | Description |
>> | ----------------------- | ------------------------- ------------- |
>> | id | Self-incrementing ID |
>> | union_code | unique code |
>> | version | Version |
>> | process_definition_code | Workflow coding |
>> | node_code | Node code (workflow code/job code) |
>> | post_node_code | Post node code (workflow code/job code) |
>> | condition_type | Condition type 0: None 1: Judgment condition 2: Delay
>> condition |
>> | condition_params | Condition parameters |
>> | create_time | Creation time |
>> | update_time | Modification time |
>>
>> #### 3.1.3 Workflow definition table: t_ds_process_definithon
>>
>> | Column Name | Description |
>> | ---- | ---- |
>> | id | Self-incrementing ID |
>> | union_code | unique code |
>> | version | Version |
>> | name | Workflow name |
>> | project_code | Project code |
>> | release_state | Release state |
>> | user_id | Owning user ID |
>> | description | description |
>> | global_params | Global parameters |
>> | flag | Whether the process is available: 0 is not available, 1 is
>> available |
>> | receivers | recipients |
>> | receivers_cc | CC |
>> | timeout | Timeout time |
>> | tenant_id | tenant ID |
>> | create_time | Creation time |
>> | update_time | Modification time |
>>
>> #### 3.1.4 Job definition log table: t_ds_task_definithon_log
>>
>> Add operation type (add, modify, delete), operator, and operation time
>> based on the job definition table
>>
>> #### 3.1.5 Job relation log table: t_ds_task_relation_log
>>
>> Add operation type (add, modify, delete), operator, and operation time
>> based on the job relationship table
>>
>> #### 3.1.6 Workflow definition log table: t_ds_process_definithon_log
>>
>> Add operation type (add, modify, delete), operator, and operation time
>> based on the workflow definition table
>>
>> ### 3.2 Frontend
>>
>> *The design here is just a personal idea, and the front-end help is needed
>> to design the interaction*
>>
>> Need to add job management related functions, including: job list, job
>> creation, update, delete, view details operations
>>
>> To create a workflow page, you need to split json into workflow definition
>> data and job relationship data to the back-end API layer to save/update
>>
>> Workflow page, when dragging task nodes, add reference job options
>>
>> The conditional branch nodes and delay nodes need to be resolved into the
>> conditional rule data in the relationship; conversely, the conditional
>> rule
>> data returned by the backend needs to be displayed as the corresponding
>> node when querying the workflow
>>
>> ### 3.3 Master
>>
>> When the Master schedules the workflow, you need to modify <Build dag from
>> json> to <Build dag from relational data>. When executing a workflow,
>> first
>> load the relational data in full (no job data is loaded here), generate
>> DAG, and traverse DAG execution , And then get the job data that needs to
>> be executed
>>
>> Other execution processes are consistent with existing processes
>>
>>
>>
>>
>>
>> --------------------------------------------------------------------------------------------------------------
>>
>> ## 1.现状
>>
>>
>>
>>
>> 当前DS系统的工作流定义包含了任务定义数据和任务之间关系数据,并且在数据库的设计上,任务数据和任务关系数据是以一个字符串类型字段(process_definition_json)的方式,保存在工作流定义表(t_ds_process_definition)中。
>>
>> 随着工作流和任务的增加,会产生如下问题:
>>
>> - 任务数据、关系数据和工作流数据耦合在一起,对单任务调度的场景不友好,任务必须创建在工作流内
>>
>> - 任务无法复用,因为任务是创建在工作流内的
>>
>> - 维护成本高,牵一发动全身,修改任何一个任务,都需要整体更新工作流内数据,同时也增加了日志成本
>>
>> - 工作流内任务较多时,全局搜索和统计分析效率低,例如查询哪些任务用到了哪个数据源
>>
>> - 扩展性差,例如未来要实现血缘功能,只会导致工作流定义越来越臃肿
>>
>> - 任务、关系、工作流边界模糊,条件节点、延迟节点也被当做一种任务,实际是关系与条件的组合
>>
>> 基于以上痛点,我们需要重新定义任务、关系、工作流的业务边界,基于此重新设计它们的数据结构
>>
>> ## 2.设计思路
>>
>> ### 2.1 工作流、关系、作业
>>
>> 首先,我们抛开当前的实现,明确任务(后续描述更改为作业)、关系、工作流的业务边界,如何去解耦
>>
>> - 作业:调度系统要执行的任务,作业内只包含执行作业所需要的数据和资源
>> -
>>
>>
>>
>> 关系:作业与作业之间的关系以及执行条件,包含执行关系(A完成后,执行B)和执行条件(A完成并成功后,执行B;A完成并失败后,执行C;A完成30分钟后,执行D)
>> - 工作流:一组关系的载体,工作流只保存作业间的关系(DAG是工作流的一种展示形式,创建关系的一种方式)
>>
>> 结合当前DS支持的功能,我们可以做一个分类
>>
>> - 作业:依赖检查、子流程、Shell、存储过程、Sql、Spark、Flink、MR、Python、Http、DataX、Sqoop
>> - 关系:串行执行、并行执行、聚合执行、条件分支、延迟执行
>> - 工作流:调度执行的边界,包含一组关系
>>
>> #### 2.1.1 进一步细化
>>
>> 作业定义数据,和当前的作业定义数据差别不大,都是由公共字段和自定义字段组成,只需要去掉关系相关的字段就可以了。
>>
>> 工作流定义数据,和当前的工作流定义数据差别也不大,去掉json字段就可以了。
>>
>>
>>
>>
>>
>> 关系数据,我们根据分类可以抽象为两个节点和一个路径。节点就是作业,路径包含前置节点到后置节点需要满足的条件规则是什么,条件规则包含:无条件、判断条件、延迟条件。
>>
>> ### 2.2 版本管理
>>
>>
>>
>>
>>
>> 我们明确业务边界,解耦后它们之间就变成了引用关系,工作流和关系之间是一对多,关系和作业之间是一对多。不仅是定义数据,我们还要考虑实例数据,每次工作流的调度执行都会产生工作流实例,作业和工作流都是可以变更的,而工作流实例又要支持查看、重跑、恢复失败等。这就需要引入定义数据的版本管理了。每一次工作流、关系、作业变更都需要保存旧版本数据,生成新版本数据。
>>
>> 所以这里的设计思路是:
>>
>> 定义数据需要增加版本字段
>>
>> 定义表需要增加对应的日志表
>>
>> 创建定义数据时,双写到定义表和日志表,修改定义数据时,保存修改后的版本到日志表
>>
>> 定义表的引用数据中不需要保存版本信息(引用最新版本),实例数据中保存执行时的版本信息
>>
>> ### 2.3 编码设计
>>
>>
>> 这里还涉及到工作流、作业定义数据导入导出问题,根据之前社区讨论的方案,需要引入编码方案,工作流、关系、作业每条数据都会有一个唯一编码,相关Issue:
>> https://github.com/apache/incubator-dolphinscheduler/issues/3820
>>
>> 资源:RESOURCE_xxx
>>
>> 作业:TASK_xxx
>>
>> 关系:RELATION_xxx
>>
>> 工作流:PROCESS_xxx
>>
>> 项目:PROJECT_xxx
>>
>> ## 3.设计方案
>>
>> ### 3.1 表模型设计
>>
>> #### 3.1.1 作业定义表:t_ds_task_definithon
>>
>> | 列名                    | 描述           |
>> | ----------------------- | -------------- |
>> | id                      | 自增ID         |
>> | union_code              | 唯一编码       |
>> | version                 | 版本           |
>> | name                    | 作业名称       |
>> | description             | 描述           |
>> | task_type               | 作业类型       |
>> | task_params             | 作业自定义参数 |
>> | run_flag                | 运行标志       |
>> | task_priority           | 作业优先级     |
>> | worker_group            | worker分组     |
>> | fail_retry_times        | 失败重试次数   |
>> | fail_retry_interval     | 失败重试间隔   |
>> | timeout_flag            | 超时标志       |
>> | timeout_notify_strategy | 超时通知策略   |
>> | timeout_duration        | 超时时长       |
>> | create_time             | 创建时间       |
>> | update_time             | 修改时间       |
>>
>> #### 3.1.2 作业关系表:t_ds_task_relation
>>
>> | 列名                    | 描述                                   |
>> | ----------------------- | -------------------------------------- |
>> | id                      | 自增ID                                 |
>> | union_code              | 唯一编码                               |
>> | version                 | 版本                                   |
>> | process_definition_code | 工作流编码                             |
>> | node_code               | 节点编码(工作流编码/作业编码)        |
>> | post_node_code          | 后置节点编码(工作流编码/作业编码)    |
>> | condition_type          | 条件类型 0:无 1:判断条件 2:延迟条件 |
>> | condition_params        | 条件参数                               |
>> | create_time             | 创建时间                               |
>> | update_time             | 修改时间                               |
>>
>> #### 3.1.3 工作流定义表:t_ds_process_definithon
>>
>> | 列名 | 描述 |
>> | ---- | ---- |
>> | id            | 自增ID                         |
>> | union_code    | 唯一编码                       |
>> | version       | 版本                           |
>> | name          | 工作流名称                     |
>> | project_code  | 项目编码                       |
>> | release_state | 发布状态                       |
>> | user_id       | 所属用户ID                     |
>> | description   | 描述                           |
>> | global_params | 全局参数                       |
>> | flag          | 流程是否可用:0 不可用,1 可用 |
>> | receivers     | 收件人                         |
>> | receivers_cc  | 抄送人                         |
>> | timeout       | 超时时间                       |
>> | tenant_id     | 租户ID                         |
>> | create_time   | 创建时间                       |
>> | update_time   | 修改时间                       |
>>
>> #### 3.1.4 作业定义日志表:t_ds_task_definithon_log
>>
>> 作业定义表基础上增加操作类型(新增、修改、删除)、操作人、操作时间
>>
>> #### 3.1.5 作业关系日志表:t_ds_task_relation_log
>>
>> 作业关系表基础上增加操作类型(新增、修改、删除)、操作人、操作时间
>>
>> #### 3.1.6 工作流定义日志表:t_ds_process_definithon_log
>>
>> 工作流定义表基础上增加操作类型(新增、修改、删除)、操作人、操作时间
>>
>> ### 3.2 前端
>>
>> *这里的设计只是个人想法,交互上还需要前端帮助设计下*
>>
>> 需要增加作业管理相关功能,包括:作业列表,作业的创建、更新、删除、查看详情操作
>>
>> 创建工作流页面,需要将json拆分为工作流定义数据、作业关系数据传给后端API层保存/更新
>>
>> 工作流页面,拖拽任务节点时,增加引用作业选项
>>
>> 条件分支节点、延迟节点需要解析为关系中的条件规则数据;反之,查询工作流时需要将后端返回的条件规则数据展示为对应的节点
>>
>> ### 3.3 Master
>>
>>
>>
>>
>>
>> Master调度工作流时,需要将<从json构建dag>修改为<从关系数据构建dag>,执行一个工作流时先全量加载关系数据(这里不加载作业数据),生成DAG,遍历DAG执行时,再获取需要执行的作业数据
>>
>> 其他执行流程和现有流程一致
>>
>> --------------------
>> DolphinScheduler(Incubator) Commtter
>> Hemin Wen  温合民
>> [email protected]
>> --------------------
>>
>>
>>
>>

Reply via email to