On Fri, May 30, 2025 at 02:57:19PM +0100, Anatoly Burakov wrote: > Currently, for 32-byte descriptor format, only SSE instruction set is > supported. Add implementation for AVX2 and AVX512 instruction sets. Since > we are using Rx descriptor definitions from common code, we can just use > the generic descriptor definition, as we only ever write the first 16 bytes > of it, and the layout is always the same for that part. > > Signed-off-by: Anatoly Burakov <anatoly.bura...@intel.com> > --- >
Like the idea. Feedback inline below. /Bruce > Notes: > v3 -> v4: > - Use the common descriptor format instead of constant propagation > - Syntax and whitespace cleanups > > drivers/net/intel/common/rx_vec_x86.h | 339 ++++++++++++++------------ > 1 file changed, 183 insertions(+), 156 deletions(-) > > diff --git a/drivers/net/intel/common/rx_vec_x86.h > b/drivers/net/intel/common/rx_vec_x86.h > index 7c57016df7..43f7c59449 100644 > --- a/drivers/net/intel/common/rx_vec_x86.h > +++ b/drivers/net/intel/common/rx_vec_x86.h > @@ -43,206 +43,244 @@ _ci_rxq_rearm_get_bufs(struct ci_rx_queue *rxq) > return 0; > } > > -/* > - * SSE code path can handle both 16-byte and 32-byte descriptors with one > code > - * path, as we only ever write 16 bytes at a time. > - */ > -static __rte_always_inline void > -_ci_rxq_rearm_sse(struct ci_rx_queue *rxq) > +static __rte_always_inline __m128i > +_ci_rxq_rearm_desc_sse(const __m128i vaddr) > { > const __m128i hdroom = _mm_set1_epi64x(RTE_PKTMBUF_HEADROOM); > const __m128i zero = _mm_setzero_si128(); > + > + /* add headroom to address values */ > + __m128i reg = _mm_add_epi64(vaddr, hdroom); > + > +#if RTE_IOVA_IN_MBUF > + /* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */ > + RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_iova) != > + offsetof(struct rte_mbuf, buf_addr) + 8); > + /* move IOVA to Packet Buffer Address, erase Header Buffer Address */ > + reg = _mm_unpackhi_epi64(reg, zero); > +#else > + /* erase Header Buffer Address */ > + reg = _mm_unpacklo_epi64(reg, zero); > +#endif > + return reg; > +} > + > +static __rte_always_inline void > +_ci_rxq_rearm_sse(struct ci_rx_queue *rxq) > +{ > const uint16_t rearm_thresh = CI_VPMD_RX_REARM_THRESH; > struct ci_rx_entry *rxp = &rxq->sw_ring[rxq->rxrearm_start]; > + /* SSE writes 16-bytes regardless of descriptor size */ > + const uint8_t desc_per_reg = 1; > + const uint8_t desc_per_iter = desc_per_reg * 2; > volatile union ci_rx_desc *rxdp; > int i; > > rxdp = &rxq->rx_ring[rxq->rxrearm_start]; > > /* Initialize the mbufs in vector, process 2 mbufs in one loop */ > - for (i = 0; i < rearm_thresh; i += 2, rxp += 2, rxdp += 2) { > + for (i = 0; i < rearm_thresh; > + i += desc_per_iter, > + rxp += desc_per_iter, > + rxdp += desc_per_iter) { > struct rte_mbuf *mb0 = rxp[0].mbuf; > struct rte_mbuf *mb1 = rxp[1].mbuf; > > -#if RTE_IOVA_IN_MBUF > - /* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */ > - RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_iova) != > - offsetof(struct rte_mbuf, buf_addr) + 8); > -#endif > - __m128i addr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr); > - __m128i addr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr); > + const __m128i vaddr0 = _mm_loadu_si128((const __m128i > *)&mb0->buf_addr); > + const __m128i vaddr1 = _mm_loadu_si128((const __m128i > *)&mb1->buf_addr); > > - /* add headroom to address values */ > - addr0 = _mm_add_epi64(addr0, hdroom); > - addr1 = _mm_add_epi64(addr1, hdroom); > + const __m128i reg0 = _ci_rxq_rearm_desc_sse(vaddr0); > + const __m128i reg1 = _ci_rxq_rearm_desc_sse(vaddr1); > > -#if RTE_IOVA_IN_MBUF > - /* move IOVA to Packet Buffer Address, erase Header Buffer > Address */ > - addr0 = _mm_unpackhi_epi64(addr0, zero); > - addr0 = _mm_unpackhi_epi64(addr1, zero); > -#else > - /* erase Header Buffer Address */ > - addr0 = _mm_unpacklo_epi64(addr0, zero); > - addr1 = _mm_unpacklo_epi64(addr1, zero); > -#endif > - > - /* flush desc with pa dma_addr */ > - _mm_store_si128(RTE_CAST_PTR(__m128i *, &rxdp[0]), addr0); > - _mm_store_si128(RTE_CAST_PTR(__m128i *, &rxdp[1]), addr1); > + /* flush descriptors */ > + _mm_store_si128(RTE_CAST_PTR(__m128i *, &rxdp[0]), reg0); > + _mm_store_si128(RTE_CAST_PTR(__m128i *, &rxdp[1]), reg1); > } > } > > -#ifdef RTE_NET_INTEL_USE_16BYTE_DESC > #ifdef __AVX2__ > -/* AVX2 version for 16-byte descriptors, handles 4 buffers at a time */ > -static __rte_always_inline void > -_ci_rxq_rearm_avx2(struct ci_rx_queue *rxq) > +static __rte_always_inline __m256i > +_ci_rxq_rearm_desc_avx2(const __m128i vaddr0, const __m128i vaddr1) > { > - struct ci_rx_entry *rxp = &rxq->sw_ring[rxq->rxrearm_start]; > - const uint16_t rearm_thresh = CI_VPMD_RX_REARM_THRESH; > - const __m256i hdroom = _mm256_set1_epi64x(RTE_PKTMBUF_HEADROOM); > + const __m256i hdr_room = _mm256_set1_epi64x(RTE_PKTMBUF_HEADROOM); > const __m256i zero = _mm256_setzero_si256(); > + > + /* merge by casting 0 to 256-bit and inserting 1 into the high lanes */ > + __m256i reg = _mm256_inserti128_si256(_mm256_castsi128_si256(vaddr0), > vaddr1, 1); > + > + /* add headroom to address values */ > + reg = _mm256_add_epi64(reg, hdr_room); > + > +#if RTE_IOVA_IN_MBUF > + /* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */ > + RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_iova) != > + offsetof(struct rte_mbuf, buf_addr) + 8); > + /* extract IOVA addr into Packet Buffer Address, erase Header Buffer > Address */ > + reg = _mm256_unpackhi_epi64(reg, zero); > +#else > + /* erase Header Buffer Address */ > + reg = _mm256_unpacklo_epi64(reg, zero); > +#endif > + return reg; > +} > + > +static __rte_always_inline void > +_ci_rxq_rearm_avx2(struct ci_rx_queue *rxq) > +{ > + struct ci_rx_entry *rxp = &rxq->sw_ring[rxq->rxrearm_start]; > + const uint16_t rearm_thresh = CI_VPMD_RX_REARM_THRESH; > + /* how many descriptors can fit into a register */ > + const uint8_t desc_per_reg = sizeof(__m256i) / sizeof(union ci_rx_desc); > + /* how many descriptors can fit into one loop iteration */ > + const uint8_t desc_per_iter = desc_per_reg * 2; > volatile union ci_rx_desc *rxdp; > int i; > > - RTE_BUILD_BUG_ON(sizeof(union ci_rx_desc) != 16); > - > rxdp = &rxq->rx_ring[rxq->rxrearm_start]; > > - /* Initialize the mbufs in vector, process 4 mbufs in one loop */ > - for (i = 0; i < rearm_thresh; i += 4, rxp += 4, rxdp += 4) { > - struct rte_mbuf *mb0 = rxp[0].mbuf; > - struct rte_mbuf *mb1 = rxp[1].mbuf; > - struct rte_mbuf *mb2 = rxp[2].mbuf; > - struct rte_mbuf *mb3 = rxp[3].mbuf; > + /* Initialize the mbufs in vector, process 2 or 4 mbufs in one loop */ > + for (i = 0; i < rearm_thresh; > + i += desc_per_iter, > + rxp += desc_per_iter, > + rxdp += desc_per_iter) { > + __m256i reg0, reg1; > > -#if RTE_IOVA_IN_MBUF > - /* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */ > - RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_iova) != > - offsetof(struct rte_mbuf, buf_addr) + 8); > -#endif > - const __m128i vaddr0 = _mm_loadu_si128((__m128i > *)&mb0->buf_addr); > - const __m128i vaddr1 = _mm_loadu_si128((__m128i > *)&mb1->buf_addr); > - const __m128i vaddr2 = _mm_loadu_si128((__m128i > *)&mb2->buf_addr); > - const __m128i vaddr3 = _mm_loadu_si128((__m128i > *)&mb3->buf_addr); > + if (desc_per_iter == 2) { > + /* 16 byte descriptor, 16 byte zero, times two */ > + const __m128i zero = _mm_setzero_si128(); > + const struct rte_mbuf *mb0 = rxp[0].mbuf; > + const struct rte_mbuf *mb1 = rxp[1].mbuf; > > - /** > - * merge 0 & 1, by casting 0 to 256-bit and inserting 1 > - * into the high lanes. Similarly for 2 & 3 > - */ > - const __m256i vaddr0_256 = _mm256_castsi128_si256(vaddr0); > - const __m256i vaddr2_256 = _mm256_castsi128_si256(vaddr2); > + const __m128i vaddr0 = _mm_loadu_si128((const __m128i > *)&mb0->buf_addr); > + const __m128i vaddr1 = _mm_loadu_si128((const __m128i > *)&mb1->buf_addr); Minor nit, but do we need to use unaligned loads here? The mbuf is marked as cache-aligned, and buf_addr is the first field in it. > > - __m256i addr0_1 = _mm256_inserti128_si256(vaddr0_256, vaddr1, > 1); > - __m256i addr2_3 = _mm256_inserti128_si256(vaddr2_256, vaddr3, > 1); > + reg0 = _ci_rxq_rearm_desc_avx2(vaddr0, zero); > + reg1 = _ci_rxq_rearm_desc_avx2(vaddr1, zero); The compiler may optimize this away, but rather than calling this function with a zero register, we can save the call to insert the zero into the high register half by just using the SSE/AVX-128 function, and casting the result (which should be a no-op). > + } else { > + /* 16 byte descriptor times four */ > + const struct rte_mbuf *mb0 = rxp[0].mbuf; > + const struct rte_mbuf *mb1 = rxp[1].mbuf; > + const struct rte_mbuf *mb2 = rxp[2].mbuf; > + const struct rte_mbuf *mb3 = rxp[3].mbuf; > > - /* add headroom to address values */ > - addr0_1 = _mm256_add_epi64(addr0_1, hdroom); > - addr0_1 = _mm256_add_epi64(addr0_1, hdroom); > + const __m128i vaddr0 = _mm_loadu_si128((const __m128i > *)&mb0->buf_addr); > + const __m128i vaddr1 = _mm_loadu_si128((const __m128i > *)&mb1->buf_addr); > + const __m128i vaddr2 = _mm_loadu_si128((const __m128i > *)&mb2->buf_addr); > + const __m128i vaddr3 = _mm_loadu_si128((const __m128i > *)&mb3->buf_addr); > > -#if RTE_IOVA_IN_MBUF > - /* extract IOVA addr into Packet Buffer Address, erase Header > Buffer Address */ > - addr0_1 = _mm256_unpackhi_epi64(addr0_1, zero); > - addr2_3 = _mm256_unpackhi_epi64(addr2_3, zero); > -#else > - /* erase Header Buffer Address */ > - addr0_1 = _mm256_unpacklo_epi64(addr0_1, zero); > - addr2_3 = _mm256_unpacklo_epi64(addr2_3, zero); > -#endif > + reg0 = _ci_rxq_rearm_desc_avx2(vaddr0, vaddr1); > + reg1 = _ci_rxq_rearm_desc_avx2(vaddr2, vaddr3); > + } > > - /* flush desc with pa dma_addr */ > - _mm256_store_si256(RTE_CAST_PTR(__m256i *, &rxdp[0]), addr0_1); > - _mm256_store_si256(RTE_CAST_PTR(__m256i *, &rxdp[2]), addr2_3); > + /* flush descriptors */ > + _mm256_store_si256(RTE_CAST_PTR(__m256i *, &rxdp[0]), reg0); > + _mm256_store_si256(RTE_CAST_PTR(__m256i *, &rxdp[2]), reg1); This should be rxdp[desc_per_reg], not rxdp[2]. > } > } > #endif /* __AVX2__ */ > > #ifdef __AVX512VL__ > -/* AVX512 version for 16-byte descriptors, handles 8 buffers at a time */ > -static __rte_always_inline void > -_ci_rxq_rearm_avx512(struct ci_rx_queue *rxq) > +static __rte_always_inline __m512i > +_ci_rxq_rearm_desc_avx512(const __m128i vaddr0, const __m128i vaddr1, > + const __m128i vaddr2, const __m128i vaddr3) > { > - struct ci_rx_entry *rxp = &rxq->sw_ring[rxq->rxrearm_start]; > - const uint16_t rearm_thresh = CI_VPMD_RX_REARM_THRESH; > - const __m512i hdroom = _mm512_set1_epi64(RTE_PKTMBUF_HEADROOM); > const __m512i zero = _mm512_setzero_si512(); > + const __m512i hdroom = _mm512_set1_epi64(RTE_PKTMBUF_HEADROOM); > + > + /** > + * merge 0 & 1, by casting 0 to 256-bit and inserting 1 into the high > + * lanes. Similarly for 2 & 3. > + */ > + const __m256i vaddr0_1 = > _mm256_inserti128_si256(_mm256_castsi128_si256(vaddr0), vaddr1, 1); > + const __m256i vaddr2_3 = > _mm256_inserti128_si256(_mm256_castsi128_si256(vaddr2), vaddr3, 1); > + /* > + * merge 0+1 & 2+3, by casting 0+1 to 512-bit and inserting 2+3 into the > + * high lanes. > + */ > + __m512i reg = _mm512_inserti64x4(_mm512_castsi256_si512(vaddr0_1), > vaddr2_3, 1); > + > + /* add headroom to address values */ > + reg = _mm512_add_epi64(reg, hdroom); > + > +#if RTE_IOVA_IN_MBUF > + /* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */ > + RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_iova) != > + offsetof(struct rte_mbuf, buf_addr) + 8); > + /* extract IOVA addr into Packet Buffer Address, erase Header Buffer > Address */ > + reg = _mm512_unpackhi_epi64(reg, zero); > +#else > + /* erase Header Buffer Address */ > + reg = _mm512_unpacklo_epi64(reg, zero); > +#endif > + return reg; > +} > + > +static __rte_always_inline void > +_ci_rxq_rearm_avx512(struct ci_rx_queue *rxq) > +{ > + struct ci_rx_entry *rxp = &rxq->sw_ring[rxq->rxrearm_start]; > + const uint16_t rearm_thresh = CI_VPMD_RX_REARM_THRESH; > + /* how many descriptors can fit into a register */ > + const uint8_t desc_per_reg = sizeof(__m512i) / sizeof(union ci_rx_desc); > + /* how many descriptors can fit into one loop iteration */ > + const uint8_t desc_per_iter = desc_per_reg * 2; > volatile union ci_rx_desc *rxdp; > int i; > > - RTE_BUILD_BUG_ON(sizeof(union ci_rx_desc) != 16); > - > rxdp = &rxq->rx_ring[rxq->rxrearm_start]; > > - /* Initialize the mbufs in vector, process 8 mbufs in one loop */ > - for (i = 0; i < rearm_thresh; i += 8, rxp += 8, rxdp += 8) { > - struct rte_mbuf *mb0 = rxp[0].mbuf; > - struct rte_mbuf *mb1 = rxp[1].mbuf; > - struct rte_mbuf *mb2 = rxp[2].mbuf; > - struct rte_mbuf *mb3 = rxp[3].mbuf; > - struct rte_mbuf *mb4 = rxp[4].mbuf; > - struct rte_mbuf *mb5 = rxp[5].mbuf; > - struct rte_mbuf *mb6 = rxp[6].mbuf; > - struct rte_mbuf *mb7 = rxp[7].mbuf; > + /* Initialize the mbufs in vector, process 4 or 8 mbufs in one loop */ > + for (i = 0; i < rearm_thresh; > + i += desc_per_iter, > + rxp += desc_per_iter, > + rxdp += desc_per_iter) { > + __m512i reg0, reg1; > > -#if RTE_IOVA_IN_MBUF > - /* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */ > - RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_iova) != > - offsetof(struct rte_mbuf, buf_addr) + 8); > -#endif > - const __m128i vaddr0 = _mm_loadu_si128((__m128i > *)&mb0->buf_addr); > - const __m128i vaddr1 = _mm_loadu_si128((__m128i > *)&mb1->buf_addr); > - const __m128i vaddr2 = _mm_loadu_si128((__m128i > *)&mb2->buf_addr); > - const __m128i vaddr3 = _mm_loadu_si128((__m128i > *)&mb3->buf_addr); > - const __m128i vaddr4 = _mm_loadu_si128((__m128i > *)&mb4->buf_addr); > - const __m128i vaddr5 = _mm_loadu_si128((__m128i > *)&mb5->buf_addr); > - const __m128i vaddr6 = _mm_loadu_si128((__m128i > *)&mb6->buf_addr); > - const __m128i vaddr7 = _mm_loadu_si128((__m128i > *)&mb7->buf_addr); > + if (desc_per_iter == 4) { > + /* 16-byte descriptor, 16 byte zero, times four */ > + const __m128i zero = _mm_setzero_si128(); > + const struct rte_mbuf *mb0 = rxp[0].mbuf; > + const struct rte_mbuf *mb1 = rxp[1].mbuf; > + const struct rte_mbuf *mb2 = rxp[2].mbuf; > + const struct rte_mbuf *mb3 = rxp[3].mbuf; > > - /** > - * merge 0 & 1, by casting 0 to 256-bit and inserting 1 > - * into the high lanes. Similarly for 2 & 3, and so on. > - */ > - const __m256i addr0_256 = _mm256_castsi128_si256(vaddr0); > - const __m256i addr2_256 = _mm256_castsi128_si256(vaddr2); > - const __m256i addr4_256 = _mm256_castsi128_si256(vaddr4); > - const __m256i addr6_256 = _mm256_castsi128_si256(vaddr6); > + const __m128i vaddr0 = _mm_loadu_si128((const __m128i > *)&mb0->buf_addr); > + const __m128i vaddr1 = _mm_loadu_si128((const __m128i > *)&mb1->buf_addr); > + const __m128i vaddr2 = _mm_loadu_si128((const __m128i > *)&mb2->buf_addr); > + const __m128i vaddr3 = _mm_loadu_si128((const __m128i > *)&mb3->buf_addr); > > - const __m256i addr0_1 = _mm256_inserti128_si256(addr0_256, > vaddr1, 1); > - const __m256i addr2_3 = _mm256_inserti128_si256(addr2_256, > vaddr3, 1); > - const __m256i addr4_5 = _mm256_inserti128_si256(addr4_256, > vaddr5, 1); > - const __m256i addr6_7 = _mm256_inserti128_si256(addr6_256, > vaddr7, 1); > + reg0 = _ci_rxq_rearm_desc_avx512(vaddr0, zero, vaddr1, > zero); > + reg1 = _ci_rxq_rearm_desc_avx512(vaddr2, zero, vaddr3, > zero); I can't help but thinking we can probably do a little better than this merging in zeros using AVX-512 mask registers, e.g. using _mm256_maskz_broadcastq_epi64() intrinsic, but it will be ok for now! :-) > + } else { > + /* 16-byte descriptor times eight */ > + const struct rte_mbuf *mb0 = rxp[0].mbuf; > + const struct rte_mbuf *mb1 = rxp[1].mbuf; > + const struct rte_mbuf *mb2 = rxp[2].mbuf; > + const struct rte_mbuf *mb3 = rxp[3].mbuf; > + const struct rte_mbuf *mb4 = rxp[4].mbuf; > + const struct rte_mbuf *mb5 = rxp[5].mbuf; > + const struct rte_mbuf *mb6 = rxp[6].mbuf; > + const struct rte_mbuf *mb7 = rxp[7].mbuf; > > - /** > - * merge 0_1 & 2_3, by casting 0_1 to 512-bit and inserting 2_3 > - * into the high lanes. Similarly for 4_5 & 6_7, and so on. > - */ > - const __m512i addr0_1_512 = _mm512_castsi256_si512(addr0_1); > - const __m512i addr4_5_512 = _mm512_castsi256_si512(addr4_5); > + const __m128i vaddr0 = _mm_loadu_si128((const __m128i > *)&mb0->buf_addr); > + const __m128i vaddr1 = _mm_loadu_si128((const __m128i > *)&mb1->buf_addr); > + const __m128i vaddr2 = _mm_loadu_si128((const __m128i > *)&mb2->buf_addr); > + const __m128i vaddr3 = _mm_loadu_si128((const __m128i > *)&mb3->buf_addr); > + const __m128i vaddr4 = _mm_loadu_si128((const __m128i > *)&mb4->buf_addr); > + const __m128i vaddr5 = _mm_loadu_si128((const __m128i > *)&mb5->buf_addr); > + const __m128i vaddr6 = _mm_loadu_si128((const __m128i > *)&mb6->buf_addr); > + const __m128i vaddr7 = _mm_loadu_si128((const __m128i > *)&mb7->buf_addr); > > - __m512i addr0_3 = _mm512_inserti64x4(addr0_1_512, addr2_3, 1); > - __m512i addr4_7 = _mm512_inserti64x4(addr4_5_512, addr6_7, 1); > - > - /* add headroom to address values */ > - addr0_3 = _mm512_add_epi64(addr0_3, hdroom); > - addr4_7 = _mm512_add_epi64(addr4_7, hdroom); > - > -#if RTE_IOVA_IN_MBUF > - /* extract IOVA addr into Packet Buffer Address, erase Header > Buffer Address */ > - addr0_3 = _mm512_unpackhi_epi64(addr0_3, zero); > - addr4_7 = _mm512_unpackhi_epi64(addr4_7, zero); > -#else > - /* erase Header Buffer Address */ > - addr0_3 = _mm512_unpacklo_epi64(addr0_3, zero); > - addr4_7 = _mm512_unpacklo_epi64(addr4_7, zero); > -#endif > + reg0 = _ci_rxq_rearm_desc_avx512(vaddr0, vaddr1, > vaddr2, vaddr3); > + reg1 = _ci_rxq_rearm_desc_avx512(vaddr4, vaddr5, > vaddr6, vaddr7); To shorten the code (and this applies elsewhere too), we can remove the vaddr* temporary variables and just do the loads implicitly in the function calls, e.g. reg0 = _ci_rxq_rearm_desc_avx512((const __m128i *)&mb0->buf_addr, (const __m128i *)&mb1->buf_addr, (const __m128i *)&mb2->buf_addr, (const __m128i *)&mb3->buf_addr); > + } > > /* flush desc with pa dma_addr */ > - _mm512_store_si512(RTE_CAST_PTR(__m512i *, &rxdp[0]), addr0_3); > - _mm512_store_si512(RTE_CAST_PTR(__m512i *, &rxdp[4]), addr4_7); > + _mm512_store_si512(RTE_CAST_PTR(__m512i *, &rxdp[0]), reg0); > + _mm512_store_si512(RTE_CAST_PTR(__m512i *, &rxdp[4]), reg1); Again, the "4" needs to be adjusted based on desc size. > } > } > #endif /* __AVX512VL__ */ > -#endif /* RTE_NET_INTEL_USE_16BYTE_DESC */ > > static __rte_always_inline void > ci_rxq_rearm(struct ci_rx_queue *rxq, const enum ci_rx_vec_level vec_level) > @@ -254,7 +292,6 @@ ci_rxq_rearm(struct ci_rx_queue *rxq, const enum > ci_rx_vec_level vec_level) > if (_ci_rxq_rearm_get_bufs(rxq) < 0) > return; > <snip>