Github user bitblender commented on a diff in the pull request:
https://github.com/apache/drill/pull/914#discussion_r140644571
--- Diff:
exec/java-exec/src/main/java/org/apache/drill/exec/physical/rowSet/impl/TupleState.java
---
@@ -0,0 +1,353 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one
+ * or more contributor license agreements. See the NOTICE file
+ * distributed with this work for additional information
+ * regarding copyright ownership. The ASF licenses this file
+ * to you under the Apache License, Version 2.0 (the
+ * "License"); you may not use this file except in compliance
+ * with the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+package org.apache.drill.exec.physical.rowSet.impl;
+
+import java.util.ArrayList;
+import java.util.List;
+
+import org.apache.drill.exec.expr.TypeHelper;
+import
org.apache.drill.exec.physical.rowSet.impl.ColumnState.BaseMapColumnState;
+import
org.apache.drill.exec.physical.rowSet.impl.ColumnState.MapArrayColumnState;
+import
org.apache.drill.exec.physical.rowSet.impl.ColumnState.MapColumnState;
+import org.apache.drill.exec.record.ColumnMetadata;
+import org.apache.drill.exec.record.MaterializedField;
+import org.apache.drill.exec.record.TupleMetadata;
+import org.apache.drill.exec.record.TupleSchema;
+import org.apache.drill.exec.record.TupleSchema.AbstractColumnMetadata;
+import org.apache.drill.exec.vector.ValueVector;
+import org.apache.drill.exec.vector.accessor.ObjectType;
+import org.apache.drill.exec.vector.accessor.ObjectWriter;
+import org.apache.drill.exec.vector.accessor.TupleWriter;
+import
org.apache.drill.exec.vector.accessor.TupleWriter.TupleWriterListener;
+import org.apache.drill.exec.vector.accessor.impl.HierarchicalFormatter;
+import org.apache.drill.exec.vector.accessor.writer.AbstractObjectWriter;
+import org.apache.drill.exec.vector.accessor.writer.AbstractTupleWriter;
+import org.apache.drill.exec.vector.accessor.writer.ColumnWriterFactory;
+import org.apache.drill.exec.vector.complex.AbstractMapVector;
+
+public abstract class TupleState implements TupleWriterListener {
+
+ public static class RowState extends TupleState {
+
+ /**
+ * The row-level writer for stepping through rows as they are written,
+ * and for accessing top-level columns.
+ */
+
+ private final RowSetLoaderImpl writer;
+
+ public RowState(ResultSetLoaderImpl rsLoader) {
+ super(rsLoader, rsLoader.projectionSet);
+ writer = new RowSetLoaderImpl(rsLoader, schema);
+ writer.bindListener(this);
+ }
+
+ public RowSetLoaderImpl rootWriter() { return writer; }
+
+ @Override
+ public AbstractTupleWriter writer() { return writer; }
+
+ @Override
+ public int innerCardinality() { return
resultSetLoader.targetRowCount();}
+ }
+
+ public static class MapState extends TupleState {
+
+ protected final AbstractMapVector mapVector;
+ protected final BaseMapColumnState mapColumnState;
+ protected int outerCardinality;
+
+ public MapState(ResultSetLoaderImpl rsLoader,
+ BaseMapColumnState mapColumnState,
+ AbstractMapVector mapVector,
+ ProjectionSet projectionSet) {
+ super(rsLoader, projectionSet);
+ this.mapVector = mapVector;
+ this.mapColumnState = mapColumnState;
+ mapColumnState.writer().bindListener(this);
+ }
+
+ @Override
+ protected void columnAdded(ColumnState colState) {
+ @SuppressWarnings("resource")
+ ValueVector vector = colState.vector();
+
+ // Can't materialize the child if the map itself is
+ // not materialized.
+
+ assert mapVector != null || vector == null;
+ if (vector != null) {
+ mapVector.putChild(vector.getField().getName(), vector);
+ }
+ }
+
+ @Override
+ public AbstractTupleWriter writer() {
+ AbstractObjectWriter objWriter = mapColumnState.writer();
+ TupleWriter tupleWriter;
+ if (objWriter.type() == ObjectType.ARRAY) {
+ tupleWriter = objWriter.array().tuple();
+ } else {
+ tupleWriter = objWriter.tuple();
+ }
+ return (AbstractTupleWriter) tupleWriter;
+ }
+
+ @Override
+ public void updateCardinality(int outerCardinality) {
+ this.outerCardinality = outerCardinality;
+ super.updateCardinality(outerCardinality);
+ }
+
+ @Override
+ public int innerCardinality() {
+ return outerCardinality *
mapColumnState.schema().expectedElementCount();
+ }
+
+ @Override
+ public void dump(HierarchicalFormatter format) {
+ format
+ .startObject(this)
+ .attribute("column", mapColumnState.schema().name())
+ .attribute("cardinality", outerCardinality)
+ .endObject();
+ }
+ }
+
+ protected final ResultSetLoaderImpl resultSetLoader;
+ protected final List<ColumnState> columns = new ArrayList<>();
+ protected final TupleSchema schema = new TupleSchema();
+ protected final ProjectionSet projectionSet;
+
+ protected TupleState(ResultSetLoaderImpl rsLoader, ProjectionSet
projectionSet) {
+ this.resultSetLoader = rsLoader;
+ this.projectionSet = projectionSet;
+ }
+
+ public abstract int innerCardinality();
+
+ public List<ColumnState> columns() { return columns; }
+
+ public TupleMetadata schema() { return writer().schema(); }
+
+ public abstract AbstractTupleWriter writer();
+
+ @Override
+ public ObjectWriter addColumn(TupleWriter tupleWriter, MaterializedField
column) {
+ return addColumn(tupleWriter, TupleSchema.fromField(column));
+ }
+
+ @Override
+ public ObjectWriter addColumn(TupleWriter tupleWriter, ColumnMetadata
columnSchema) {
+
+ // Verify name is not a (possibly case insensitive) duplicate.
+
+ TupleMetadata tupleSchema = schema();
+ String colName = columnSchema.name();
+ if (tupleSchema.column(colName) != null) {
+ throw new IllegalArgumentException("Duplicate column: " + colName);
+ }
+
+ return addColumn(columnSchema);
+ }
+
+ private AbstractObjectWriter addColumn(ColumnMetadata columnSchema) {
+
+ // Indicate projection in the metadata.
+
+ ((AbstractColumnMetadata) columnSchema).setProjected(
+ projectionSet.isProjected(columnSchema.name()));
+
+ // Build the column
+
+ ColumnState colState;
+ if (columnSchema.isMap()) {
+ colState = buildMap(columnSchema);
+ } else {
+ colState = buildPrimitive(columnSchema);
+ }
+ columns.add(colState);
+ columnAdded(colState);
+ colState.updateCardinality(innerCardinality());
+ colState.allocateVectors();
+ return colState.writer();
+ }
+
+ protected void columnAdded(ColumnState colState) { }
+
+ @SuppressWarnings("resource")
+ private ColumnState buildPrimitive(ColumnMetadata columnSchema) {
+ ValueVector vector;
+ if (columnSchema.isProjected()) {
+
+ // Create the vector for the column.
+
+ vector =
resultSetLoader.vectorCache().addOrGet(columnSchema.schema());
+ } else {
+
+ // Column is not projected. No materialized backing for the column.
+
+ vector = null;
+ }
+
+ // Create the writer. Will be returned to the tuple writer.
+
+ AbstractObjectWriter colWriter =
ColumnWriterFactory.buildColumnWriter(columnSchema, vector);
+
+ if (columnSchema.isArray()) {
+ return PrimitiveColumnState.newPrimitiveArray(resultSetLoader,
vector, colWriter);
+// } if (columnSchema.isNullable()) {
+// return PrimitiveColumnState.newNullablePrimitive(resultSetLoader,
vector, colWriter);
+ } else {
+ return PrimitiveColumnState.newPrimitive(resultSetLoader, vector,
colWriter);
+ }
+ }
+
+ @SuppressWarnings("resource")
+ private ColumnState buildMap(ColumnMetadata columnSchema) {
+
+ // When dynamically adding columns, must add the (empty)
+ // map by itself, then add columns to the map via separate
+ // calls.
+
+ assert columnSchema.isMap();
+ assert columnSchema.mapSchema().size() == 0;
+
+ AbstractMapVector mapVector = null;
+ if (columnSchema.isProjected()) {
+
+ // Don't get the map vector from the vector cache. Map vectors may
+ // have content that varies from batch to batch. Only the leaf
+ // vectors can be cached.
+
+ mapVector = (AbstractMapVector) TypeHelper.getNewVector(
+ columnSchema.schema(),
+ resultSetLoader.allocator(),
+ null);
+
+ // Creating the vector cloned the schema. Replace the
+ // field in the column metadata to match the one in the vector.
+ // Doing so is an implementation hack, so access a method on the
+ // implementation class.
+
+ ((AbstractColumnMetadata)
columnSchema).replaceField(mapVector.getField());
+ } else {
+ // Map is not materialized. Map, and all its contained columns
+ // will be dummy writers.
+
+ mapVector = null;
+ }
+
+ // Create the writer. Will be returned to the tuple writer.
+
+ AbstractObjectWriter mapWriter =
ColumnWriterFactory.buildMapWriter(columnSchema, mapVector);
+
+ ProjectionSet childProjection =
projectionSet.mapProjection(columnSchema.name());
+ if (columnSchema.isArray()) {
+ return MapArrayColumnState.build(resultSetLoader, mapVector,
mapWriter, childProjection);
+ } else {
+ return new MapColumnState(resultSetLoader, mapVector, mapWriter,
childProjection);
+ }
+ }
+
+ public void buildSchema(TupleMetadata schema) {
+ for (int i = 0; i < schema.size(); i++) {
+ ColumnMetadata colSchema = schema.metadata(i);
+ AbstractObjectWriter colWriter;
+ if (colSchema.isMap()) {
+ colWriter = addColumn(colSchema.cloneEmpty());
+ BaseMapColumnState mapColState = (BaseMapColumnState)
columns.get(columns.size() - 1);
+ mapColState.mapState().buildSchema(colSchema.mapSchema());
+ } else {
+ colWriter = addColumn(colSchema);
+ }
+ writer().addColumnWriter(colWriter);
+ }
+ }
+
+ public void updateCardinality(int cardinality) {
+ for (ColumnState colState : columns) {
+ colState.updateCardinality(cardinality);
+ }
+ }
+
+ /**
+ * A column within the row batch overflowed. Prepare to absorb the rest
of the
+ * in-flight row by rolling values over to a new vector, saving the
complete
+ * vector for later. This column could have a value for the overflow
row, or
+ * for some previous row, depending on exactly when and where the
overflow
+ * occurs.
+ *
+ * @param overflowIndex
--- End diff --
No such param
---