Hi Rahul,

FYI, the FLIP process involves a voting process as well [1] before
implementation. I have two more question regarding sending batch id
downstream:

1. For openai batch api specifically, does it needs a `custom_id` for each
request? Where is this custom_id from?
2. If you batch several requests, they will get the same batch_id as the
response. Does downstream need to poll them for each request even though
they all have the same batch_id?

[1]
https://cwiki.apache.org/confluence/display/FLINK/Flink+Improvement+Proposals#FlinkImprovementProposals-Accepted

Thanks,
Hao

On Thu, Nov 20, 2025 at 2:09 PM Rahul Bhattacharya <[email protected]>
wrote:

> i created a Jira for this
> https://issues.apache.org/jira/browse/FLINK-38708
>
> On Fri, Nov 14, 2025 at 2:04 PM Hao Li <[email protected]> wrote:
>
> > Hi Shengkai,
> >
> > > process them together, and complete the future objects sequentially as
> > they finish
> >
> > The batch api Rahul proposed is [1] which sends batch request from file,
> > return an id and we need to poll the id for results. The important part
> is
> > it can take 24 hours to finish. So Rahua is proposing to just send the
> > result id to downstream.
> >
> > [1] https://platform.openai.com/docs/guides/batch
> >
> > On Fri, Nov 14, 2025 at 8:35 AM Rahul Bhattacharya <[email protected]>
> > wrote:
> >
> > > Hi Shengkai,
> > > so i am understanding we will go with option 1 and send the batchid
> > > downstream to do whatever the user needs to do with the batchids?
> > >
> > > i also in the opinion that option 1 is a better option for now than
> > option
> > > 2.
> > > Based on a parameter setting we should batch n records , create a
> > > jsonl file and post it to the LLM batch api.
> > > The LLM will immediately return the batch id which we can just send it
> > > downstream. this implementation will be stateless and really simple to
> > > implement
> > >
> > >
> > > regards
> > >
> > >
> > >
> > > On Fri, Nov 14, 2025 at 4:18 AM Shengkai Fang <[email protected]>
> wrote:
> > >
> > > > Hi. Rahul
> > > >
> > > > First, I believe we don't need to modify the framework. Instead, we
> can
> > > > have the async predict function collect records in batches, process
> > them
> > > > together, and complete the future objects sequentially as they
> finish.
> > > This
> > > > approach allows us to move forward quickly.
> > > >
> > > > Second, I have concerns about introducing state or external storage.
> On
> > > one
> > > > hand, the current design is stateless, and transitioning to a
> stateful
> > > > architecture would require significant refactoring. On the other
> hand,
> > I
> > > > don't see clear advantages to storing batch IDs in state, since we
> > cannot
> > > > guarantee that elements will arrive in the same order after restoring
> > > from
> > > > a checkpoint. For example, if the ML predictor receives elements e1,
> > e2,
> > > e3
> > > > in the first run, it might receive e2, e3, e1 after recovery. With a
> > > batch
> > > > size of 2, we wouldn't be able to reuse the in-flight requests
> > > effectively.
> > > >
> > > > Finally, I suggest we leverage the IOManager to handle JSON file
> > > > management.
> > > >
> > > > Best,
> > > > Shengkai
> > > >
> > > >
> > > > Rahul Bhattacharya <[email protected]> 于2025年11月11日周二 09:03写道:
> > > >
> > > > > Hi Hao
> > > > > For option 2 the guarantees like exactly once and other things are
> > not
> > > > > guaranteed as it’s not in the same flink process
> > > > >
> > > > > The flink process finishes after the submission and getting
> batchids
> > > > which
> > > > > it sends downstream
> > > > >
> > > > > There has to be another process(doesn’t have to be flink)  which
> > takes
> > > > > these batchids and polls the OpenAI endpoint for status completed.
> > > > >
> > > > > Once it gets completed it downloads the results and sends
> downstream
> > > > >
> > > > > This secondary process is on client discretion , for Kafka
> probably a
> > > > http
> > > > > sink connector or Kafka consumer
> > > > >
> > > > > Thanks And Regards
> > > > > Rahul
> > > > >
> > > > >
> > > > > On Mon, Nov 10, 2025 at 6:45 PM Hao Li <[email protected]>
> > > wrote:
> > > > >
> > > > > > Hi Rahul,
> > > > > >
> > > > > > Thanks for the proposal. From some offline discussion, the
> endpoint
> > > you
> > > > > > have in mind to support is OpenAI batch API [1]. The doc states
> > that
> > > > > "Each
> > > > > > batch completes within 24 hours (and often more quickly)". With
> > this
> > > > > > context, I have some questions:
> > > > > >
> > > > > > 1. For design option 1, does the operator always wait for batch
> > > > response
> > > > > > until processing next batch? This can take 24 hours which isn't
> > > > feasible
> > > > > > for streaming job I think.
> > > > > >
> > > > > > 2. For design option 2, why it loses exact-once and have higher
> > > latency
> > > > > > compared to 1?
> > > > > >
> > > > > > 3. Also for the public interface section, are the parameters in
> > > > > > `ml_predict` config or in options when `create model`?
> > > > > >
> > > > > > Thanks,
> > > > > > Hao
> > > > > >
> > > > > >
> > > > > > [1] https://platform.openai.com/docs/guides/batch/batch-api
> > > > > >
> > > > > > On Mon, Nov 10, 2025 at 10:19 AM Asimansu Bera <
> > > > [email protected]>
> > > > > > wrote:
> > > > > >
> > > > > > > +1
> > > > > > >
> > > > > > > This proposal is needed for optimizing network calls and
> > processing
> > > > > asyc.
> > > > > > >
> > > > > > > Thanks
> > > > > > > Asimansu
> > > > > > >
> > > > > > > On Mon, Nov 10, 2025 at 4:04 AM Shengkai Fang <
> [email protected]
> > >
> > > > > wrote:
> > > > > > >
> > > > > > > > Hi, Rahul.
> > > > > > > >
> > > > > > > > +1 for this proposal. However, due to my current workload,
> I'll
> > > > need
> > > > > > > until
> > > > > > > > the end of this week to review it thoroughly.
> > > > > > > >
> > > > > > > > Best,
> > > > > > > > Shengkai
> > > > > > > >
> > > > > > > > Rahul Bhattacharya <[email protected]> 于2025年11月9日周日
> > 13:08写道:
> > > > > > > >
> > > > > > > > > Hi ,
> > > > > > > > > i have created a draft FLIP for it
> > > > > > > > >
> > > > > >
> > > https://docs.google.com/document/d/1U-eSuKwi5vIgAPt6ZBvb-RcbcRJiRy0e/
> > > > > > > > >
> > > > > > > > > Please let me know your thoughts
> > > > > > > > >
> > > > > > > > > regards
> > > > > > > > > Rahul
> > > > > > > > >
> > > > > > > > > On Sat, Nov 8, 2025 at 5:54 PM Rahul Bhattacharya <
> > > > > > [email protected]
> > > > > > > >
> > > > > > > > > wrote:
> > > > > > > > >
> > > > > > > > > > Hi,
> > > > > > > > > > I actually thought of reworking my previous response. I
> > want
> > > > the
> > > > > > > table
> > > > > > > > > api
> > > > > > > > > > to create jsonl files and call openai/claude batch apis.
> > > > > > > > > > The implementation I am doing is going to batch the
> records
> > > > into
> > > > > a
> > > > > > > file
> > > > > > > > > > and call the api with the file and then continuously poll
> > the
> > > > > > repose
> > > > > > > to
> > > > > > > > > see
> > > > > > > > > > the status of the batch and then use that to write the
> > > response
> > > > > > > > records.
> > > > > > > > > > The ML_Predict in its current form is not usable as
> people
> > > are
> > > > > not
> > > > > > > > > looking
> > > > > > > > > > for synchronous response which is twice as expensive as
> the
> > > > > > > > asynchronous
> > > > > > > > > > response.
> > > > > > > > > > let me know you thoughts and i can create a FLIP for it
> > > > > > > > > > regards
> > > > > > > > > >
> > > > > > > > > > On Sat, Nov 8, 2025 at 3:14 PM Rahul Bhattacharya <
> > > > > > > [email protected]
> > > > > > > > >
> > > > > > > > > > wrote:
> > > > > > > > > >
> > > > > > > > > >> Hi Flink Community,
> > > > > > > > > >>
> > > > > > > > > >> I'm interested in contributing an enhancement to Apache
> > > > Flink's
> > > > > > > > > >> ML_PREDICT
> > > > > > > > > >> functionality for LLM interactions. I'd like to gauge
> > > > community
> > > > > > > > interest
> > > > > > > > > >> and get
> > > > > > > > > >> early feedback before proceeding with detailed design
> or a
> > > > FLIP.
> > > > > > > > > >>
> > > > > > > > > >> ## Problem Statement
> > > > > > > > > >>
> > > > > > > > > >> Currently, when using Flink SQL's ML_PREDICT with LLM
> > > > endpoints,
> > > > > > > each
> > > > > > > > > >> record
> > > > > > > > > >> triggers an individual API call. For a stream processing
> > > 1000
> > > > > > > > > >> records/second,
> > > > > > > > > >> this results in:
> > > > > > > > > >>
> > > > > > > > > >> - **1000 separate API calls per second**
> > > > > > > > > >> - **High latency**: Each call has network overhead + API
> > > > > > processing
> > > > > > > > time
> > > > > > > > > >> - **High cost**: Most LLM providers charge per token,
> and
> > > lack
> > > > > of
> > > > > > > > > >> batching means
> > > > > > > > > >>   no cost optimization
> > > > > > > > > >> - **Rate limiting issues**: Hitting provider rate limits
> > > > quickly
> > > > > > > > > >> - **Poor throughput**: API calls are serialized per
> record
> > > > > > > > > >>
> > > > > > > > > >> ### Current Behavior (Inefficient)
> > > > > > > > > >> ```sql
> > > > > > > > > >> -- This makes 10 individual API calls
> > > > > > > > > >> SELECT id, ML_PREDICT('llm_model', text) as result
> > > > > > > > > >> FROM (VALUES
> > > > > > > > > >>     (1, 'text1'), (2, 'text2'), ..., (10, 'text10')
> > > > > > > > > >> ) AS t(id, text);
> > > > > > > > > >> ```
> > > > > > > > > >> **Result**: 10 separate HTTP requests, 10x latency, 10x
> > > > overhead
> > > > > > > > > >>
> > > > > > > > > >> ## Proposed Solution: Application-Level Batching with
> > Prompt
> > > > > > > > Engineering
> > > > > > > > > >>
> > > > > > > > > >> Since most LLM APIs (OpenAI, Anthropic Claude, etc.)
> don't
> > > > > provide
> > > > > > > > > native
> > > > > > > > > >> batch
> > > > > > > > > >> endpoints, we propose implementing batching at the
> > > application
> > > > > > level
> > > > > > > > by:
> > > > > > > > > >>
> > > > > > > > > >> 1. **Accumulating N records** into a single batch
> > > > > > > > > >> 2. **Injecting records into a structured prompt** that
> > > > instructs
> > > > > > the
> > > > > > > > LLM
> > > > > > > > > >> to
> > > > > > > > > >>    process multiple items
> > > > > > > > > >> 3. **Parsing structured responses** to extract results
> for
> > > > each
> > > > > > > record
> > > > > > > > > >> 4. **Emitting individual results** back to the Flink
> > > pipeline
> > > > > > > > > >>
> > > > > > > > > >> ### How It Works
> > > > > > > > > >>
> > > > > > > > > >> **Step 1: Batch Accumulation**
> > > > > > > > > >> Collect up to `batch.size` records or wait up to `
> > > > > > batch.timeout.ms`
> > > > > > > > > >>
> > > > > > > > > >> **Step 2: Prompt Construction**
> > > > > > > > > >>
> > > > > > > > > >> System: You are a sentiment analyzer. Process each item
> > and
> > > > > > respond
> > > > > > > > with
> > > > > > > > > >> JSON.
> > > > > > > > > >>
> > > > > > > > > >> User: Analyze the sentiment of these texts. Return a
> JSON
> > > > array
> > > > > > with
> > > > > > > > one
> > > > > > > > > >> object per input containing "index" and "sentiment"
> > fields.
> > > > > > > > > >>
> > > > > > > > > >> Input 1: "This product is amazing!" Input 2: "Terrible
> > > > > experience,
> > > > > > > > very
> > > > > > > > > >> disappointed" Input 3: "It's okay, nothing special" ...
> > > Input
> > > > > 10:
> > > > > > > > "Best
> > > > > > > > > >> purchase ever!"
> > > > > > > > > >>
> > > > > > > > > >> Respond with: [{"index": 1, "sentiment": "..."},
> {"index":
> > > 2,
> > > > > > > > > >> "sentiment": "..."}, ...]
> > > > > > > > > >>
> > > > > > > > > >> **Step 3: Response Parsing**
> > > > > > > > > >> ```json
> > > > > > > > > >> [
> > > > > > > > > >>   {"index": 1, "sentiment": "positive"},
> > > > > > > > > >>   {"index": 2, "sentiment": "negative"},
> > > > > > > > > >>   {"index": 3, "sentiment": "neutral"},
> > > > > > > > > >>   ...
> > > > > > > > > >>   {"index": 10, "sentiment": "positive"}
> > > > > > > > > >> ]
> > > > > > > > > >> ```
> > > > > > > > > >>
> > > > > > > > > >> **Step 4: Result Distribution**
> > > > > > > > > >> Parse JSON and emit individual results back to
> > corresponding
> > > > > > records
> > > > > > > > > >>
> > > > > > > > > >> ### Model Configuration (Defaults)
> > > > > > > > > >> ```sql
> > > > > > > > > >> CREATE MODEL llm_sentiment WITH (
> > > > > > > > > >>     'provider' = 'openai',
> > > > > > > > > >>     'model' = 'gpt-4',
> > > > > > > > > >>     'api_key' = '${API_KEY}',
> > > > > > > > > >>     'batch.size' = '20',
> > > > > > > > > >>     'batch.timeout.ms' = '1000',
> > > > > > > > > >>     'system.prompt' = 'You are a sentiment analyzer.
> > Always
> > > > > > respond
> > > > > > > > with
> > > > > > > > > >> valid JSON.',
> > > > > > > > > >>     'batch.prompt.template' = 'Analyze sentiment for
> these
> > > > > texts.
> > > > > > > > Return
> > > > > > > > > >> JSON array: [{"index": <n>, "sentiment":
> > > > > > > > > "<positive|negative|neutral>"}]',
> > > > > > > > > >>     'response.format' = 'json',
> > > > > > > > > >>     'response.path' = '$[*]',  -- JSONPath to extract
> > array
> > > of
> > > > > > > results
> > > > > > > > > >>     'response.index.field' = 'index',  -- Field
> containing
> > > > > record
> > > > > > > > index
> > > > > > > > > >>     'response.value.field' = 'sentiment'  -- Field
> > > containing
> > > > > > result
> > > > > > > > > >> );
> > > > > > > > > >> ```
> > > > > > > > > >>
> > > > > > > > > >> ### Query Usage (Use Defaults)
> > > > > > > > > >> ```sql
> > > > > > > > > >> -- Uses batch_size=20 from model definition
> > > > > > > > > >> SELECT id, text, ML_PREDICT('llm_sentiment', text) as
> > > > sentiment
> > > > > > > > > >> FROM customer_reviews;
> > > > > > > > > >> ```
> > > > > > > > > >>
> > > > > > > > > >> ### Query Usage (Override for Custom Analysis)
> > > > > > > > > >> ```sql
> > > > > > > > > >> -- Override prompt and batch size for different use case
> > > > > > > > > >> SELECT id, text, ML_PREDICT('llm_sentiment', text,
> > > > > > > > > >>     MAP['batch.size', '50',
> > > > > > > > > >>         'batch.prompt.template', 'Extract key entities.
> > > Return
> > > > > > JSON:
> > > > > > > > > >> [{"index": <n>, "entities": [...]}]',
> > > > > > > > > >>         'response.value.field', 'entities']) as entities
> > > > > > > > > >> FROM documents;
> > > > > > > > > >> ```
> > > > > > > > > >>
> > > > > > > > > >> ## Performance and Cost Impact
> > > > > > > > > >>
> > > > > > > > > >> ### Example: Processing 10,000 customer reviews
> > > > > > > > > >>
> > > > > > > > > >> **Current (unbatched)**:
> > > > > > > > > >> - 10,000 API calls
> > > > > > > > > >> - ~10,000 x 200ms latency = 2,000 seconds total
> processing
> > > > time
> > > > > > > > > >> (serialized)
> > > > > > > > > >> - ~10,000 x $0.002 = $20 in API costs
> > > > > > > > > >> - High rate limit pressure
> > > > > > > > > >>
> > > > > > > > > >> **With batching (batch_size=20)**:
> > > > > > > > > >> - 500 API calls (10,000 / 20)
> > > > > > > > > >> - ~500 x 300ms latency = 150 seconds total processing
> time
> > > > > > > > > >> - ~500 x $0.006 = $3 in API costs (slightly higher per
> > call
> > > > due
> > > > > to
> > > > > > > > > larger
> > > > > > > > > >> prompts,
> > > > > > > > > >>   but still 85% cheaper overall)
> > > > > > > > > >> - **20x fewer API calls**
> > > > > > > > > >> - **13x faster processing**
> > > > > > > > > >> - **85% cost reduction**
> > > > > > > > > >>
> > > > > > > > > >> ## Proposed Implementation
> > > > > > > > > >>
> > > > > > > > > >> ### Configuration Parameters
> > > > > > > > > >>
> > > > > > > > > >> **Model-level (defaults)**:
> > > > > > > > > >> - `batch.size`: Maximum records per batch (default: 1
> for
> > > > > backward
> > > > > > > > > >> compatibility)
> > > > > > > > > >> - `batch.timeout.ms`: Max time to wait before flushing
> > > > > incomplete
> > > > > > > > batch
> > > > > > > > > >> (default: 1000ms)
> > > > > > > > > >> - `system.prompt`: System-level instruction for the LLM
> > > > > > > > > >> - `batch.prompt.template`: Template explaining how to
> > > process
> > > > > > > batched
> > > > > > > > > >> inputs
> > > > > > > > > >> - `response.format`: Expected response format ('json',
> > > 'xml',
> > > > > > > > > 'delimited')
> > > > > > > > > >> - `response.path`: JSONPath or XPath to extract results
> > > array
> > > > > > > > > >> - `response.index.field`: Field name containing the
> record
> > > > index
> > > > > > > > > >> - `response.value.field`: Field name containing the
> actual
> > > > > result
> > > > > > > > > >> - `max.retries`: Retry attempts for failed batches
> > (default:
> > > > 3)
> > > > > > > > > >> - `request.timeout.ms`: Timeout for API calls (default:
> > > > > 30000ms)
> > > > > > > > > >>
> > > > > > > > > >> **Query-level (overrides)**:
> > > > > > > > > >> - Any of the above can be overridden via MAP parameter
> in
> > > > > > ML_PREDICT
> > > > > > > > > >> - Per-query customization for different analysis tasks
> > > > > > > > > >>
> > > > > > > > > >> ### Key Features
> > > > > > > > > >> 1. **Prompt injection**: Automatically construct batch
> > > prompts
> > > > > > with
> > > > > > > > > >> indexed inputs
> > > > > > > > > >> 2. **Structured response parsing**: Support JSON, XML,
> or
> > > > > > delimited
> > > > > > > > > >> formats
> > > > > > > > > >> 3. **Index tracking**: Maintain record-to-result mapping
> > > > through
> > > > > > the
> > > > > > > > > batch
> > > > > > > > > >> 4. **Error handling**: Handle parsing failures, missing
> > > > indices,
> > > > > > > > > >> malformed responses
> > > > > > > > > >> 5. **Fallback to individual calls**: If batch fails,
> > > > optionally
> > > > > > > retry
> > > > > > > > > >> records individually
> > > > > > > > > >> 6. **Provider-agnostic**: Works with any LLM API
> (OpenAI,
> > > > > > Anthropic,
> > > > > > > > > >> Azure, self-hosted)
> > > > > > > > > >> 7. **Async processing**: Non-blocking batch requests
> > > > > > > > > >> 8. **Back-pressure**: Proper flow control when API is
> slow
> > > > > > > > > >> 9. **Backward compatible**: batch.size=1 maintains
> current
> > > > > > behavior
> > > > > > > > > >>
> > > > > > > > > >> ### Technical Approach
> > > > > > > > > >> - Extend existing ML_PREDICT infrastructure
> > > > > > > > > >> - Add batching buffer in the ML_PREDICT operator
> > > > > > > > > >> - Implement prompt template engine for batch
> construction:
> > > > > > > > > >>   - Inject record index + content into template
> > > > > > > > > >>   - Support various templating formats (JSON, XML, plain
> > > text)
> > > > > > > > > >> - Implement response parser:
> > > > > > > > > >>   - Extract structured data (JSONPath, XPath, regex)
> > > > > > > > > >>   - Map results back to original records by index
> > > > > > > > > >>   - Handle missing or malformed responses
> > > > > > > > > >> - Maintain record ordering and error attribution
> > > > > > > > > >> - Support parameter override mechanism in ML_PREDICT
> > > function
> > > > > > > > signature
> > > > > > > > > >>
> > > > > > > > > >> ### Response Parsing Strategy
> > > > > > > > > >>
> > > > > > > > > >> The implementation must handle:
> > > > > > > > > >> 1. **Successful batch response**: Parse and distribute
> > > results
> > > > > > > > > >> 2. **Partial failure**: Some records missing from
> > response →
> > > > > emit
> > > > > > > > errors
> > > > > > > > > >> for those
> > > > > > > > > >> 3. **Complete parse failure**: Optionally fallback to
> > > > individual
> > > > > > > calls
> > > > > > > > > >> 4. **Index mismatch**: Response indices don't match
> input
> > →
> > > > log
> > > > > > > > warning
> > > > > > > > > >> and best-effort match
> > > > > > > > > >> 5. **Malformed JSON**: Retry with error handling
> > > > > > > > > >>
> > > > > > > > > >> Example error handling:
> > > > > > > > > >> ```sql
> > > > > > > > > >> -- Records that fail parsing get null results with error
> > > > > metadata
> > > > > > > > > >> SELECT
> > > > > > > > > >>     id,
> > > > > > > > > >>     text,
> > > > > > > > > >>     result.value as sentiment,
> > > > > > > > > >>     result.error as error_msg
> > > > > > > > > >> FROM source_table,
> > > > > > > > > >> LATERAL TABLE(ML_PREDICT('llm_sentiment', text));
> > > > > > > > > >> ```
> > > > > > > > > >>
> > > > > > > > > >> ## Limitations and Considerations
> > > > > > > > > >>
> > > > > > > > > >> 1. **LLM instruction following**: Depends on model's
> > ability
> > > > to
> > > > > > > follow
> > > > > > > > > >> structured
> > > > > > > > > >>    output instructions. GPT-4 and Claude are reliable;
> > older
> > > > > > models
> > > > > > > > may
> > > > > > > > > >> struggle.
> > > > > > > > > >>
> > > > > > > > > >> 2. **Prompt size limits**: Batching too many records may
> > > > exceed
> > > > > > > > context
> > > > > > > > > >> windows
> > > > > > > > > >>    - GPT-4: ~8K tokens input limit
> > > > > > > > > >>    - Claude: ~200K tokens but practical batches smaller
> > > > > > > > > >>    - Need configurable max batch size based on average
> > > record
> > > > > > length
> > > > > > > > > >>
> > > > > > > > > >> 3. **Token cost trade-off**: Larger batches mean:
> > > > > > > > > >>    - Fewer API calls (good)
> > > > > > > > > >>    - But larger prompts with instructions/formatting
> > (slight
> > > > > > > overhead)
> > > > > > > > > >>    - Net savings still 80-90% in practice
> > > > > > > > > >>
> > > > > > > > > >> 4. **Parsing reliability**: Small risk of malformed
> > > responses
> > > > > > > > > >>    - Mitigated by: clear instructions, JSON mode
> (GPT-4),
> > > > retry
> > > > > > > logic
> > > > > > > > > >>    - Fallback to individual calls if batch parsing fails
> > > > > > repeatedly
> > > > > > > > > >>
> > > > > > > > > >> 5. **Latency characteristics**:
> > > > > > > > > >>    - Individual records see slightly higher latency
> > (waiting
> > > > for
> > > > > > > > batch)
> > > > > > > > > >>    - Overall throughput dramatically improved
> > > > > > > > > >>    - Use `batch.timeout.ms` to balance latency vs
> > > throughput
> > > > > > > > > >>
> > > > > > > > > >> ## Future Extensions
> > > > > > > > > >>
> > > > > > > > > >> This batching architecture would support:
> > > > > > > > > >> 1. **Stateful chat sessions**: Batch multiple turns of a
> > > > > > > conversation
> > > > > > > > > >> with
> > > > > > > > > >>    maintained history per session key
> > > > > > > > > >> 2. **Embedding generation**: Some providers (OpenAI) do
> > have
> > > > > batch
> > > > > > > > > >> embedding APIs
> > > > > > > > > >> 3. **Multi-modal batching**: Batch image + text
> processing
> > > > with
> > > > > > > > > >> structured outputs
> > > > > > > > > >>
> > > > > > > > > >> ## Questions for the Community
> > > > > > > > > >>
> > > > > > > > > >> 1. **Architecture**: Should this extend ML_PREDICT or
> be a
> > > new
> > > > > > > > function?
> > > > > > > > > >>    (I propose extending ML_PREDICT for backward
> > > compatibility)
> > > > > > > > > >>
> > > > > > > > > >> 2. **FLIP Required?**: Does this enhancement warrant a
> > FLIP?
> > > > > > > > > >>
> > > > > > > > > >> 3. **Existing Work**: Is anyone working on batching for
> > > > > ML_PREDICT
> > > > > > > or
> > > > > > > > > >> similar
> > > > > > > > > >>    functionality?
> > > > > > > > > >>
> > > > > > > > > >> 4. **Prompt Template Engine**: Should we:
> > > > > > > > > >>    - Build a custom template engine?
> > > > > > > > > >>    - Use existing library (e.g., StringTemplate,
> > Mustache)?
> > > > > > > > > >>    - Keep it simple with String.format initially?
> > > > > > > > > >>
> > > > > > > > > >> 5. **Response Parsing**: Preferred approach:
> > > > > > > > > >>    - JSONPath library (flexible but adds dependency)
> > > > > > > > > >>    - Simple JSON parsing with field names
> > > > > > > > > >>    - Pluggable parser interface for extensibility?
> > > > > > > > > >>
> > > > > > > > > >> 6. **Error Handling**: If parsing fails for entire
> batch:
> > > > > > > > > >>    - Fail all records in batch?
> > > > > > > > > >>    - Retry batch once more?
> > > > > > > > > >>    - Fallback to individual calls (with circuit
> breaker)?
> > > > > > > > > >>    - Make strategy configurable?
> > > > > > > > > >>
> > > > > > > > > >> 7. **Batch Assembly**: Should batching happen:
> > > > > > > > > >>    - Per parallel instance (each task maintains its own
> > > > batch)?
> > > > > > > > > >>    - Globally coordinated (shuffle to batch
> coordinator)?
> > > > > > > > > >>    - I propose per-instance for simplicity and lower
> > latency
> > > > > > > > > >>
> > > > > > > > > >> 8. **Compatibility**: Default batch.size=1 to maintain
> > > current
> > > > > > > > behavior,
> > > > > > > > > >> users
> > > > > > > > > >>    opt-in to batching?
> > > > > > > > > >>
> > > > > > > > > >> ## Why This Matters
> > > > > > > > > >>
> > > > > > > > > >> LLM inference is becoming a critical part of real-time
> > data
> > > > > > > pipelines.
> > > > > > > > > >> Without
> > > > > > > > > >> batching:
> > > > > > > > > >> - Users face prohibitive costs for high-throughput
> > workloads
> > > > > > > > > >> - Rate limits block production deployments
> > > > > > > > > >> - Latency makes real-time processing impractical
> > > > > > > > > >>
> > > > > > > > > >> While LLM providers don't offer native batch APIs,
> > > > > > application-level
> > > > > > > > > >> batching
> > > > > > > > > >> through prompt engineering is a proven pattern used in
> > > > > production
> > > > > > by
> > > > > > > > > many
> > > > > > > > > >> organizations. This proposal brings that capability
> > natively
> > > > > into
> > > > > > > > Flink.
> > > > > > > > > >>
> > > > > > > > > >> The hybrid configuration approach provides:
> > > > > > > > > >> - **Sensible defaults** for common use cases (sentiment
> > > > > analysis,
> > > > > > > > > >> classification)
> > > > > > > > > >> - **Flexibility** to customize prompts and parsing for
> > > > specific
> > > > > > > needs
> > > > > > > > > >> - **Easy migration** for existing queries (batch.size=1
> > > > default)
> > > > > > > > > >>
> > > > > > > > > >> ## Next Steps
> > > > > > > > > >>
> > > > > > > > > >> If there's interest from the community, I'm happy to:
> > > > > > > > > >> 1. Prepare a detailed design document with prompt
> > templates
> > > > and
> > > > > > > > parsing
> > > > > > > > > >> examples
> > > > > > > > > >> 2. Create a JIRA ticket
> > > > > > > > > >> 3. Develop a prototype demonstrating the batching and
> > > parsing
> > > > > > logic
> > > > > > > > > >> 4. Write a FLIP if required
> > > > > > > > > >>
> > > > > > > > > >> Looking forward to your feedback and guidance on how
> best
> > to
> > > > > > > > proceed!--
> > > > > > > > > >> Thanks And Regards
> > > > > > > > > >> Rahul
> > > > > > > > > >>
> > > > > > > > > >
> > > > > > > > > >
> > > > > > > > > > --
> > > > > > > > > > Thanks And Regards
> > > > > > > > > > Rahul
> > > > > > > > > >
> > > > > > > > >
> > > > > > > > >
> > > > > > > > > --
> > > > > > > > > Thanks And Regards
> > > > > > > > > Rahul
> > > > > > > > >
> > > > > > > >
> > > > > > >
> > > > > >
> > > > >
> > > >
> > >
> > >
> > > --
> > > Thanks And Regards
> > > Rahul
> > >
> >
>
>
> --
> Thanks And Regards
> Rahul
>

Reply via email to