[ 
https://issues.apache.org/jira/browse/GOBBLIN-2185?focusedWorklogId=949919&page=com.atlassian.jira.plugin.system.issuetabpanels:worklog-tabpanel#worklog-949919
 ]

ASF GitHub Bot logged work on GOBBLIN-2185:
-------------------------------------------

                Author: ASF GitHub Bot
            Created on: 24/Dec/24 04:03
            Start Date: 24/Dec/24 04:03
    Worklog Time Spent: 10m 
      Work Description: Blazer-007 commented on code in PR #4087:
URL: https://github.com/apache/gobblin/pull/4087#discussion_r1896349367


##########
gobblin-temporal/src/test/java/org/apache/gobblin/temporal/ddm/activity/impl/RecommendScalingForWorkUnitsLinearHeuristicImplTest.java:
##########
@@ -0,0 +1,78 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements.  See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License.  You may obtain a copy of the License at
+ *
+ *    http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.gobblin.temporal.ddm.activity.impl;
+
+import org.mockito.Mock;
+import org.mockito.Mockito;
+import org.mockito.MockitoAnnotations;
+import org.testng.Assert;
+import org.testng.annotations.BeforeMethod;
+import org.testng.annotations.Test;
+
+import org.apache.gobblin.runtime.JobState;
+import org.apache.gobblin.temporal.GobblinTemporalConfigurationKeys;
+import org.apache.gobblin.temporal.ddm.work.TimeBudget;
+import org.apache.gobblin.temporal.ddm.work.WorkUnitsSizeSummary;
+
+
+/** Test for {@link RecommendScalingForWorkUnitsLinearHeuristicImpl} */
+public class RecommendScalingForWorkUnitsLinearHeuristicImplTest {
+
+  private RecommendScalingForWorkUnitsLinearHeuristicImpl scalingHeuristic;
+  @Mock private JobState jobState;
+  @Mock private WorkUnitsSizeSummary workUnitsSizeSummary;
+  @Mock private TimeBudget timeBudget;
+
+  @BeforeMethod
+  public void setUp() {
+    scalingHeuristic = new RecommendScalingForWorkUnitsLinearHeuristicImpl();
+    MockitoAnnotations.openMocks(this);
+  }
+
+  @Test
+  public void testCalcDerivationSetPoint() {
+    
Mockito.when(jobState.getPropAsInt(Mockito.eq(GobblinTemporalConfigurationKeys.TEMPORAL_NUM_WORKERS_PER_CONTAINER),
 Mockito.anyInt()))
+        .thenReturn(4); // 4 workers per container
+    
Mockito.when(jobState.getPropAsLong(Mockito.eq(RecommendScalingForWorkUnitsLinearHeuristicImpl.AMORTIZED_NUM_BYTES_PER_MINUTE),
 Mockito.anyLong()))
+        .thenReturn(100L * 1000 * 1000); // 100MB/minute
+    long targetTimeBudgetMinutes = 75L;
+    
Mockito.when(timeBudget.getMaxTargetDurationMinutes()).thenReturn(targetTimeBudgetMinutes);
+
+    long totalNumMWUs = 3000L;
+    
Mockito.when(workUnitsSizeSummary.getTopLevelWorkUnitsCount()).thenReturn(totalNumMWUs);
+    
Mockito.when(workUnitsSizeSummary.getTopLevelWorkUnitsMeanSize()).thenReturn(500e6);
 // 500MB
+    // parallelization capacity = 20 container-slots
+    // per-container-slot rate = 5 mins / MWU

Review Comment:
   Can you please explain this how this parallelization capacity & 
per-container-slot rate is derived / calculated ?



##########
gobblin-temporal/src/main/java/org/apache/gobblin/temporal/dynamic/ScalingDirectiveParser.java:
##########
@@ -263,29 +283,50 @@ public static String asString(ScalingDirective directive) 
{
     directive.getOptDerivedFrom().ifPresent(derivedFrom -> {
       sb.append(',').append(derivedFrom.getBasisProfileName());
       sb.append(derivedFrom.getOverlay() instanceof ProfileOverlay.Adding ? 
"+(" : "-(");
-      ProfileOverlay overlay = derivedFrom.getOverlay();
-      if (overlay instanceof ProfileOverlay.Adding) {
-        ProfileOverlay.Adding adding = (ProfileOverlay.Adding) overlay;
-        for (ProfileOverlay.KVPair kv : adding.getAdditionPairs()) {
-          
sb.append(kv.getKey()).append('=').append(urlEncode(kv.getValue())).append(", 
");
-        }
-        if (adding.getAdditionPairs().size() > 0) {
-          sb.setLength(sb.length() - 2);  // remove trailing ", "
-        }
-      } else {
-        ProfileOverlay.Removing removing = (ProfileOverlay.Removing) overlay;
-        for (String key : removing.getRemovalKeys()) {
-          sb.append(key).append(", ");
-        }
-        if (removing.getRemovalKeys().size() > 0) {
-          sb.setLength(sb.length() - 2);  // remove trailing ", "
-        }
-      }
+      sb.append(stringifyProfileOverlay(derivedFrom.getOverlay()));
       sb.append(')');
     });
     return sb.toString();
   }
 
+  /** @return the `scalingDirective` invariably stringified as two parts, a 
{@link StringWithPlaceholderPlusOverlay} - regardless of stringified length */
+  public static StringWithPlaceholderPlusOverlay 
asStringWithPlaceholderPlusOverlay(ScalingDirective directive) {
+    StringBuilder sb = new StringBuilder();
+    
sb.append(directive.getTimestampEpochMillis()).append('.').append(directive.getProfileName()).append('=').append(directive.getSetPoint());
+    Optional<String> optProfileOverlayStr = 
directive.getOptDerivedFrom().map(derivedFrom ->
+        stringifyProfileOverlay(derivedFrom.getOverlay())
+    );
+    directive.getOptDerivedFrom().ifPresent(derivedFrom -> {
+      sb.append(',').append(derivedFrom.getBasisProfileName());
+      sb.append(derivedFrom.getOverlay() instanceof ProfileOverlay.Adding ? 
"+(" : "-(");
+      sb.append(OVERLAY_DEFINITION_PLACEHOLDER);
+      sb.append(')');
+    });
+    return new StringWithPlaceholderPlusOverlay(sb.toString(), 
optProfileOverlayStr.orElse(""));
+  }
+
+  private static String stringifyProfileOverlay(ProfileOverlay overlay) {
+    StringBuilder sb = new StringBuilder();
+    if (overlay instanceof ProfileOverlay.Adding) {
+      ProfileOverlay.Adding adding = (ProfileOverlay.Adding) overlay;
+      for (ProfileOverlay.KVPair kv : adding.getAdditionPairs()) {
+        
sb.append(kv.getKey()).append('=').append(urlEncode(kv.getValue())).append(", 
");
+      }
+      if (adding.getAdditionPairs().size() > 0) {
+        sb.setLength(sb.length() - 2);  // remove trailing ", "
+      }
+    } else {
+      ProfileOverlay.Removing removing = (ProfileOverlay.Removing) overlay;
+      for (String key : removing.getRemovalKeys()) {
+        sb.append(key).append(", ");
+      }
+      if (removing.getRemovalKeys().size() > 0) {
+        sb.setLength(sb.length() - 2);  // remove trailing ", "
+      }
+    }
+    return sb.toString();
+  }

Review Comment:
   can this be part of `ProfileOverlay` interface definition itself to have 
each implementation one `toString()` method implemented as here for `Combo` 
stringifyProfileOverlay wouldn't work I assume



##########
gobblin-temporal/src/main/java/org/apache/gobblin/temporal/ddm/activity/impl/RecommendScalingForWorkUnitsLinearHeuristicImpl.java:
##########
@@ -27,16 +27,22 @@
 
 
 /**
- * Simple config-driven linear relationship between `remainingWork` and the 
resulting `setPoint`
+ * Simple config-driven linear recommendation for how many containers to use 
to complete the "remaining work" within a given {@link TimeBudget}, per:
  *
- *
- * TODO: describe algo!!!!!
+ *   a. from {@link WorkUnitsSizeSummary}, find how many (remaining) 
"top-level" {@link org.apache.gobblin.source.workunit.MultiWorkUnit}s of some 
mean size
+ *   b. from the configured {@link #AMORTIZED_NUM_BYTES_PER_MINUTE}, find the 
expected "processing rate" in bytes / minute
+ * 1. estimate the time required for processing a mean-sized `MultiWorkUnit` 
(MWU)
+ *   c. from {@link JobState}, find per-container `MultiWorkUnit` parallelism 
capacity (aka. "worker-slots") to base the recommendation upon
+ * 2. calculate the per-container throughput of MWUs per minute
+ * 3. estimate the total per-container-minutes required to process all MWUs
+ *   d. from the {@link TimeBudget}, find the target number of minutes in 
which to complete processing of all MWUs
+ * 4. recommend the number of containers so all MWU processing should finish 
within the target number of minutes

Review Comment:
   looks like some formatting mismatch as ordering is out of order a,b,1,c,2,3 





Issue Time Tracking
-------------------

            Worklog Id:     (was: 949919)
    Remaining Estimate: 0h
            Time Spent: 10m

> Implement heuristic-based GoT Dynamic Auto-Scaling
> --------------------------------------------------
>
>                 Key: GOBBLIN-2185
>                 URL: https://issues.apache.org/jira/browse/GOBBLIN-2185
>             Project: Apache Gobblin
>          Issue Type: New Feature
>          Components: gobblin-core
>            Reporter: Kip Kohn
>            Assignee: Abhishek Tiwari
>            Priority: Major
>          Time Spent: 10m
>  Remaining Estimate: 0h
>
> Using a configured (constant) Data Transfer Rate (in bytes per time), presume 
> a linear relationship holds between "Work" (WU) throughput and scaling the 
> number of worker-containers.  Provide a heuristic-based recommendation for 
> how many worker-containers to allocate in order to complete processing of a 
> job within a given time budget, with volume of Work conveyed via 
> `WorkUnitsSizeSummary`



--
This message was sent by Atlassian Jira
(v8.20.10#820010)

Reply via email to