Mostafa Mokhtar created HIVE-9712:
-------------------------------------

             Summary: Hive : Row count and data size are set to LONG.MAX when 
filter is applied on an estimate of 0
                 Key: HIVE-9712
                 URL: https://issues.apache.org/jira/browse/HIVE-9712
             Project: Hive
          Issue Type: Bug
          Components: Physical Optimizer
    Affects Versions: 0.14.0
            Reporter: Mostafa Mokhtar
            Assignee: Prasanth Jayachandran


TPC-DS Q66 generates and in-efficient plan because cardinality estimate of 
dimension table gets set to 9223372036854775807.

{code}
    Map 10 
            Map Operator Tree:
                TableScan
                  alias: ship_mode
                  filterExpr: ((sm_carrier) IN ('DIAMOND', 'AIRBORNE') and 
sm_ship_mode_sk is not null) (type: boolean)
                  Statistics: Num rows: 0 Data size: 47 Basic stats: PARTIAL 
Column stats: COMPLETE
                  Filter Operator
                    predicate: ((sm_carrier) IN ('DIAMOND', 'AIRBORNE') and 
sm_ship_mode_sk is not null) (type: boolean)
                    Statistics: Num rows: 9223372036854775807 Data size: 
9223372036854775807 Basic stats: COMPLETE Column stats: COMPLETE
                    Select Operator
                      expressions: sm_ship_mode_sk (type: int)
                      outputColumnNames: _col0
                      Statistics: Num rows: 9223372036854775807 Data size: 
9223372036854775807 Basic stats: COMPLETE Column stats: COMPLETE
                      Reduce Output Operator
                        key expressions: _col0 (type: int)
                        sort order: +
                        Map-reduce partition columns: _col0 (type: int)
                        Statistics: Num rows: 9223372036854775807 Data size: 
9223372036854775807 Basic stats: COMPLETE Column stats: COMPLETE
            Execution mode: vectorized
{code}

Full plan 
{code}
explain  

select   
         w_warehouse_name
        ,w_warehouse_sq_ft
        ,w_city
        ,w_county
        ,w_state
        ,w_country
        ,ship_carriers
        ,year
        ,sum(jan_sales) as jan_sales
        ,sum(feb_sales) as feb_sales
        ,sum(mar_sales) as mar_sales
        ,sum(apr_sales) as apr_sales
        ,sum(may_sales) as may_sales
        ,sum(jun_sales) as jun_sales
        ,sum(jul_sales) as jul_sales
        ,sum(aug_sales) as aug_sales
        ,sum(sep_sales) as sep_sales
        ,sum(oct_sales) as oct_sales
        ,sum(nov_sales) as nov_sales
        ,sum(dec_sales) as dec_sales
        ,sum(jan_sales/w_warehouse_sq_ft) as jan_sales_per_sq_foot
        ,sum(feb_sales/w_warehouse_sq_ft) as feb_sales_per_sq_foot
        ,sum(mar_sales/w_warehouse_sq_ft) as mar_sales_per_sq_foot
        ,sum(apr_sales/w_warehouse_sq_ft) as apr_sales_per_sq_foot
        ,sum(may_sales/w_warehouse_sq_ft) as may_sales_per_sq_foot
        ,sum(jun_sales/w_warehouse_sq_ft) as jun_sales_per_sq_foot
        ,sum(jul_sales/w_warehouse_sq_ft) as jul_sales_per_sq_foot
        ,sum(aug_sales/w_warehouse_sq_ft) as aug_sales_per_sq_foot
        ,sum(sep_sales/w_warehouse_sq_ft) as sep_sales_per_sq_foot
        ,sum(oct_sales/w_warehouse_sq_ft) as oct_sales_per_sq_foot
        ,sum(nov_sales/w_warehouse_sq_ft) as nov_sales_per_sq_foot
        ,sum(dec_sales/w_warehouse_sq_ft) as dec_sales_per_sq_foot
        ,sum(jan_net) as jan_net
        ,sum(feb_net) as feb_net
        ,sum(mar_net) as mar_net
        ,sum(apr_net) as apr_net
        ,sum(may_net) as may_net
        ,sum(jun_net) as jun_net
        ,sum(jul_net) as jul_net
        ,sum(aug_net) as aug_net
        ,sum(sep_net) as sep_net
        ,sum(oct_net) as oct_net
        ,sum(nov_net) as nov_net
        ,sum(dec_net) as dec_net
 from (
    select 
        w_warehouse_name
        ,w_warehouse_sq_ft
        ,w_city
        ,w_county
        ,w_state
        ,w_country
        ,concat('DIAMOND', ',', 'AIRBORNE') as ship_carriers
        ,d_year as year
        ,sum(case when d_moy = 1 
                then ws_sales_price* ws_quantity else 0 end) as jan_sales
        ,sum(case when d_moy = 2 
                then ws_sales_price* ws_quantity else 0 end) as feb_sales
        ,sum(case when d_moy = 3 
                then ws_sales_price* ws_quantity else 0 end) as mar_sales
        ,sum(case when d_moy = 4 
                then ws_sales_price* ws_quantity else 0 end) as apr_sales
        ,sum(case when d_moy = 5 
                then ws_sales_price* ws_quantity else 0 end) as may_sales
        ,sum(case when d_moy = 6 
                then ws_sales_price* ws_quantity else 0 end) as jun_sales
        ,sum(case when d_moy = 7 
                then ws_sales_price* ws_quantity else 0 end) as jul_sales
        ,sum(case when d_moy = 8 
                then ws_sales_price* ws_quantity else 0 end) as aug_sales
        ,sum(case when d_moy = 9 
                then ws_sales_price* ws_quantity else 0 end) as sep_sales
        ,sum(case when d_moy = 10 
                then ws_sales_price* ws_quantity else 0 end) as oct_sales
        ,sum(case when d_moy = 11
                then ws_sales_price* ws_quantity else 0 end) as nov_sales
        ,sum(case when d_moy = 12
                then ws_sales_price* ws_quantity else 0 end) as dec_sales
        ,sum(case when d_moy = 1 
                then ws_net_paid_inc_tax * ws_quantity else 0 end) as jan_net
        ,sum(case when d_moy = 2
                then ws_net_paid_inc_tax * ws_quantity else 0 end) as feb_net
        ,sum(case when d_moy = 3 
                then ws_net_paid_inc_tax * ws_quantity else 0 end) as mar_net
        ,sum(case when d_moy = 4 
                then ws_net_paid_inc_tax * ws_quantity else 0 end) as apr_net
        ,sum(case when d_moy = 5 
                then ws_net_paid_inc_tax * ws_quantity else 0 end) as may_net
        ,sum(case when d_moy = 6 
                then ws_net_paid_inc_tax * ws_quantity else 0 end) as jun_net
        ,sum(case when d_moy = 7 
                then ws_net_paid_inc_tax * ws_quantity else 0 end) as jul_net
        ,sum(case when d_moy = 8 
                then ws_net_paid_inc_tax * ws_quantity else 0 end) as aug_net
        ,sum(case when d_moy = 9 
                then ws_net_paid_inc_tax * ws_quantity else 0 end) as sep_net
        ,sum(case when d_moy = 10 
                then ws_net_paid_inc_tax * ws_quantity else 0 end) as oct_net
        ,sum(case when d_moy = 11
                then ws_net_paid_inc_tax * ws_quantity else 0 end) as nov_net
        ,sum(case when d_moy = 12
                then ws_net_paid_inc_tax * ws_quantity else 0 end) as dec_net
     from
          web_sales
         ,warehouse
         ,date_dim
         ,time_dim
          ,ship_mode
     where
            web_sales.ws_warehouse_sk =  warehouse.w_warehouse_sk
        and web_sales.ws_sold_date_sk = date_dim.d_date_sk
        and web_sales.ws_sold_time_sk = time_dim.t_time_sk
        and web_sales.ws_ship_mode_sk = ship_mode.sm_ship_mode_sk
        and d_year = 2002
        and t_time between 49530 and 49530+28800 
        and sm_carrier in ('DIAMOND','AIRBORNE')
     group by 
        w_warehouse_name
        ,w_warehouse_sq_ft
        ,w_city
        ,w_county
        ,w_state
        ,w_country
       ,d_year
 union all
    select 
        w_warehouse_name
        ,w_warehouse_sq_ft
        ,w_city
        ,w_county
        ,w_state
        ,w_country
        ,concat('DIAMOND', ',', 'AIRBORNE') as ship_carriers
       ,d_year as year
        ,sum(case when d_moy = 1 
                then cs_ext_sales_price* cs_quantity else 0 end) as jan_sales
        ,sum(case when d_moy = 2 
                then cs_ext_sales_price* cs_quantity else 0 end) as feb_sales
        ,sum(case when d_moy = 3 
                then cs_ext_sales_price* cs_quantity else 0 end) as mar_sales
        ,sum(case when d_moy = 4 
                then cs_ext_sales_price* cs_quantity else 0 end) as apr_sales
        ,sum(case when d_moy = 5 
                then cs_ext_sales_price* cs_quantity else 0 end) as may_sales
        ,sum(case when d_moy = 6 
                then cs_ext_sales_price* cs_quantity else 0 end) as jun_sales
        ,sum(case when d_moy = 7 
                then cs_ext_sales_price* cs_quantity else 0 end) as jul_sales
        ,sum(case when d_moy = 8 
                then cs_ext_sales_price* cs_quantity else 0 end) as aug_sales
        ,sum(case when d_moy = 9 
                then cs_ext_sales_price* cs_quantity else 0 end) as sep_sales
        ,sum(case when d_moy = 10 
                then cs_ext_sales_price* cs_quantity else 0 end) as oct_sales
        ,sum(case when d_moy = 11
                then cs_ext_sales_price* cs_quantity else 0 end) as nov_sales
        ,sum(case when d_moy = 12
                then cs_ext_sales_price* cs_quantity else 0 end) as dec_sales
        ,sum(case when d_moy = 1 
                then cs_net_paid_inc_ship_tax * cs_quantity else 0 end) as 
jan_net
        ,sum(case when d_moy = 2 
                then cs_net_paid_inc_ship_tax * cs_quantity else 0 end) as 
feb_net
        ,sum(case when d_moy = 3 
                then cs_net_paid_inc_ship_tax * cs_quantity else 0 end) as 
mar_net
        ,sum(case when d_moy = 4 
                then cs_net_paid_inc_ship_tax * cs_quantity else 0 end) as 
apr_net
        ,sum(case when d_moy = 5 
                then cs_net_paid_inc_ship_tax * cs_quantity else 0 end) as 
may_net
        ,sum(case when d_moy = 6 
                then cs_net_paid_inc_ship_tax * cs_quantity else 0 end) as 
jun_net
        ,sum(case when d_moy = 7 
                then cs_net_paid_inc_ship_tax * cs_quantity else 0 end) as 
jul_net
        ,sum(case when d_moy = 8 
                then cs_net_paid_inc_ship_tax * cs_quantity else 0 end) as 
aug_net
        ,sum(case when d_moy = 9 
                then cs_net_paid_inc_ship_tax * cs_quantity else 0 end) as 
sep_net
        ,sum(case when d_moy = 10 
                then cs_net_paid_inc_ship_tax * cs_quantity else 0 end) as 
oct_net
        ,sum(case when d_moy = 11
                then cs_net_paid_inc_ship_tax * cs_quantity else 0 end) as 
nov_net
        ,sum(case when d_moy = 12
                then cs_net_paid_inc_ship_tax * cs_quantity else 0 end) as 
dec_net
     from
          catalog_sales
         ,warehouse
         ,date_dim
         ,time_dim
         ,ship_mode
     where
            catalog_sales.cs_warehouse_sk =  warehouse.w_warehouse_sk
        and catalog_sales.cs_sold_date_sk = date_dim.d_date_sk
        and catalog_sales.cs_sold_time_sk = time_dim.t_time_sk
        and catalog_sales.cs_ship_mode_sk = ship_mode.sm_ship_mode_sk
        and d_year = 2002
        and t_time between 49530 AND 49530+28800 
        and sm_carrier in ('DIAMOND','AIRBORNE')
     group by 
        w_warehouse_name
        ,w_warehouse_sq_ft
        ,w_city
        ,w_county
        ,w_state
        ,w_country
       ,d_year
 ) x
 group by 
        w_warehouse_name
        ,w_warehouse_sq_ft
        ,w_city
        ,w_county
        ,w_state
        ,w_country
        ,ship_carriers
       ,year
 order by w_warehouse_name
 limit 100
OK
STAGE DEPENDENCIES:
  Stage-1 is a root stage
  Stage-0 depends on stages: Stage-1

STAGE PLANS:
  Stage: Stage-1
    Tez
      Edges:
        Map 12 <- Map 15 (BROADCAST_EDGE), Map 16 (BROADCAST_EDGE)
        Map 2 <- Map 8 (BROADCAST_EDGE), Map 9 (BROADCAST_EDGE)
        Reducer 13 <- Map 11 (BROADCAST_EDGE), Map 12 (SIMPLE_EDGE), Map 17 
(SIMPLE_EDGE)
        Reducer 14 <- Reducer 13 (SIMPLE_EDGE), Union 5 (CONTAINS)
        Reducer 3 <- Map 1 (BROADCAST_EDGE), Map 10 (SIMPLE_EDGE), Map 2 
(SIMPLE_EDGE)
        Reducer 4 <- Reducer 3 (SIMPLE_EDGE), Union 5 (CONTAINS)
        Reducer 6 <- Union 5 (SIMPLE_EDGE)
        Reducer 7 <- Reducer 6 (SIMPLE_EDGE)
      DagName: mmokhtar_20150211222424_0df571ed-82d9-426e-9eb9-52f95f022fa1:1
      Vertices:
        Map 1 
            Map Operator Tree:
                TableScan
                  alias: date_dim
                  filterExpr: ((d_year = 2002) and d_date_sk is not null) 
(type: boolean)
                  Statistics: Num rows: 73049 Data size: 81741831 Basic stats: 
COMPLETE Column stats: COMPLETE
                  Filter Operator
                    predicate: ((d_year = 2002) and d_date_sk is not null) 
(type: boolean)
                    Statistics: Num rows: 652 Data size: 7824 Basic stats: 
COMPLETE Column stats: COMPLETE
                    Select Operator
                      expressions: d_date_sk (type: int), d_moy (type: int)
                      outputColumnNames: _col0, _col2
                      Statistics: Num rows: 652 Data size: 5216 Basic stats: 
COMPLETE Column stats: COMPLETE
                      Reduce Output Operator
                        key expressions: _col0 (type: int)
                        sort order: +
                        Map-reduce partition columns: _col0 (type: int)
                        Statistics: Num rows: 652 Data size: 5216 Basic stats: 
COMPLETE Column stats: COMPLETE
                        value expressions: _col2 (type: int)
            Execution mode: vectorized
        Map 10 
            Map Operator Tree:
                TableScan
                  alias: ship_mode
                  filterExpr: ((sm_carrier) IN ('DIAMOND', 'AIRBORNE') and 
sm_ship_mode_sk is not null) (type: boolean)
                  Statistics: Num rows: 0 Data size: 47 Basic stats: PARTIAL 
Column stats: COMPLETE
                  Filter Operator
                    predicate: ((sm_carrier) IN ('DIAMOND', 'AIRBORNE') and 
sm_ship_mode_sk is not null) (type: boolean)
                    Statistics: Num rows: 9223372036854775807 Data size: 
9223372036854775807 Basic stats: COMPLETE Column stats: COMPLETE
                    Select Operator
                      expressions: sm_ship_mode_sk (type: int)
                      outputColumnNames: _col0
                      Statistics: Num rows: 9223372036854775807 Data size: 
9223372036854775807 Basic stats: COMPLETE Column stats: COMPLETE
                      Reduce Output Operator
                        key expressions: _col0 (type: int)
                        sort order: +
                        Map-reduce partition columns: _col0 (type: int)
                        Statistics: Num rows: 9223372036854775807 Data size: 
9223372036854775807 Basic stats: COMPLETE Column stats: COMPLETE
            Execution mode: vectorized
        Map 11 
            Map Operator Tree:
                TableScan
                  alias: date_dim
                  filterExpr: ((d_year = 2002) and d_date_sk is not null) 
(type: boolean)
                  Statistics: Num rows: 73049 Data size: 81741831 Basic stats: 
COMPLETE Column stats: COMPLETE
                  Filter Operator
                    predicate: ((d_year = 2002) and d_date_sk is not null) 
(type: boolean)
                    Statistics: Num rows: 652 Data size: 7824 Basic stats: 
COMPLETE Column stats: COMPLETE
                    Select Operator
                      expressions: d_date_sk (type: int), d_moy (type: int)
                      outputColumnNames: _col0, _col2
                      Statistics: Num rows: 652 Data size: 5216 Basic stats: 
COMPLETE Column stats: COMPLETE
                      Reduce Output Operator
                        key expressions: _col0 (type: int)
                        sort order: +
                        Map-reduce partition columns: _col0 (type: int)
                        Statistics: Num rows: 652 Data size: 5216 Basic stats: 
COMPLETE Column stats: COMPLETE
                        value expressions: _col2 (type: int)
            Execution mode: vectorized
        Map 12 
            Map Operator Tree:
                TableScan
                  alias: catalog_sales
                  filterExpr: (((cs_warehouse_sk is not null and 
cs_sold_time_sk is not null) and cs_ship_mode_sk is not null) and 
cs_sold_date_sk is not null) (type: boolean)
                  Statistics: Num rows: 286549727 Data size: 65825832570 Basic 
stats: COMPLETE Column stats: COMPLETE
                  Filter Operator
                    predicate: (((cs_warehouse_sk is not null and 
cs_sold_time_sk is not null) and cs_ship_mode_sk is not null) and 
cs_sold_date_sk is not null) (type: boolean)
                    Statistics: Num rows: 284394646 Data size: 7948760032 Basic 
stats: COMPLETE Column stats: COMPLETE
                    Select Operator
                      expressions: cs_sold_date_sk (type: int), cs_sold_time_sk 
(type: int), cs_ship_mode_sk (type: int), cs_warehouse_sk (type: int), 
cs_quantity (type: int), cs_ext_sales_price (type: float), 
cs_net_paid_inc_ship_tax (type: float)
                      outputColumnNames: _col0, _col1, _col2, _col3, _col4, 
_col5, _col6
                      Statistics: Num rows: 284394646 Data size: 7948760032 
Basic stats: COMPLETE Column stats: COMPLETE
                      Map Join Operator
                        condition map:
                             Inner Join 0 to 1
                        keys:
                          0 _col3 (type: int)
                          1 _col0 (type: int)
                        outputColumnNames: _col0, _col1, _col2, _col4, _col5, 
_col6, _col8, _col9, _col10, _col11, _col12, _col13
                        input vertices:
                          1 Map 15
                        Statistics: Num rows: 284394656 Data size: 142766117312 
Basic stats: COMPLETE Column stats: COMPLETE
                        Map Join Operator
                          condition map:
                               Inner Join 0 to 1
                          keys:
                            0 _col1 (type: int)
                            1 _col0 (type: int)
                          outputColumnNames: _col0, _col2, _col4, _col5, _col6, 
_col8, _col9, _col10, _col11, _col12, _col13
                          input vertices:
                            1 Map 16
                          Statistics: Num rows: 142197328 Data size: 
70814269344 Basic stats: COMPLETE Column stats: COMPLETE
                          Reduce Output Operator
                            key expressions: _col2 (type: int)
                            sort order: +
                            Map-reduce partition columns: _col2 (type: int)
                            Statistics: Num rows: 142197328 Data size: 
70814269344 Basic stats: COMPLETE Column stats: COMPLETE
                            value expressions: _col0 (type: int), _col4 (type: 
int), _col5 (type: float), _col6 (type: float), _col8 (type: string), _col9 
(type: int), _col10 (type: string), _col11 (type: string), _col12 (type: 
string), _col13 (type: string)
            Execution mode: vectorized
        Map 15 
            Map Operator Tree:
                TableScan
                  alias: warehouse
                  filterExpr: w_warehouse_sk is not null (type: boolean)
                  Statistics: Num rows: 6 Data size: 6166 Basic stats: COMPLETE 
Column stats: COMPLETE
                  Filter Operator
                    predicate: w_warehouse_sk is not null (type: boolean)
                    Statistics: Num rows: 6 Data size: 2888 Basic stats: 
COMPLETE Column stats: COMPLETE
                    Select Operator
                      expressions: w_warehouse_sk (type: int), w_warehouse_name 
(type: string), w_warehouse_sq_ft (type: int), w_city (type: string), w_county 
(type: string), w_state (type: string), w_country (type: string)
                      outputColumnNames: _col0, _col1, _col2, _col3, _col4, 
_col5, _col6
                      Statistics: Num rows: 6 Data size: 2888 Basic stats: 
COMPLETE Column stats: COMPLETE
                      Reduce Output Operator
                        key expressions: _col0 (type: int)
                        sort order: +
                        Map-reduce partition columns: _col0 (type: int)
                        Statistics: Num rows: 6 Data size: 2888 Basic stats: 
COMPLETE Column stats: COMPLETE
                        value expressions: _col1 (type: string), _col2 (type: 
int), _col3 (type: string), _col4 (type: string), _col5 (type: string), _col6 
(type: string)
            Execution mode: vectorized
        Map 16 
            Map Operator Tree:
                TableScan
                  alias: time_dim
                  filterExpr: (t_time BETWEEN 49530 AND 78330 and t_time_sk is 
not null) (type: boolean)
                  Statistics: Num rows: 86400 Data size: 40694400 Basic stats: 
COMPLETE Column stats: COMPLETE
                  Filter Operator
                    predicate: (t_time BETWEEN 49530 AND 78330 and t_time_sk is 
not null) (type: boolean)
                    Statistics: Num rows: 43200 Data size: 345600 Basic stats: 
COMPLETE Column stats: COMPLETE
                    Select Operator
                      expressions: t_time_sk (type: int)
                      outputColumnNames: _col0
                      Statistics: Num rows: 43200 Data size: 172800 Basic 
stats: COMPLETE Column stats: COMPLETE
                      Reduce Output Operator
                        key expressions: _col0 (type: int)
                        sort order: +
                        Map-reduce partition columns: _col0 (type: int)
                        Statistics: Num rows: 43200 Data size: 172800 Basic 
stats: COMPLETE Column stats: COMPLETE
            Execution mode: vectorized
        Map 17 
            Map Operator Tree:
                TableScan
                  alias: ship_mode
                  filterExpr: ((sm_carrier) IN ('DIAMOND', 'AIRBORNE') and 
sm_ship_mode_sk is not null) (type: boolean)
                  Statistics: Num rows: 0 Data size: 47 Basic stats: PARTIAL 
Column stats: COMPLETE
                  Filter Operator
                    predicate: ((sm_carrier) IN ('DIAMOND', 'AIRBORNE') and 
sm_ship_mode_sk is not null) (type: boolean)
                    Statistics: Num rows: 9223372036854775807 Data size: 
9223372036854775807 Basic stats: COMPLETE Column stats: COMPLETE
                    Select Operator
                      expressions: sm_ship_mode_sk (type: int)
                      outputColumnNames: _col0
                      Statistics: Num rows: 9223372036854775807 Data size: 
9223372036854775807 Basic stats: COMPLETE Column stats: COMPLETE
                      Reduce Output Operator
                        key expressions: _col0 (type: int)
                        sort order: +
                        Map-reduce partition columns: _col0 (type: int)
                        Statistics: Num rows: 9223372036854775807 Data size: 
9223372036854775807 Basic stats: COMPLETE Column stats: COMPLETE
            Execution mode: vectorized
        Map 2 
            Map Operator Tree:
                TableScan
                  alias: web_sales
                  filterExpr: (((ws_warehouse_sk is not null and 
ws_sold_time_sk is not null) and ws_ship_mode_sk is not null) and 
ws_sold_date_sk is not null) (type: boolean)
                  Statistics: Num rows: 143966864 Data size: 33110363004 Basic 
stats: COMPLETE Column stats: COMPLETE
                  Filter Operator
                    predicate: (((ws_warehouse_sk is not null and 
ws_sold_time_sk is not null) and ws_ship_mode_sk is not null) and 
ws_sold_date_sk is not null) (type: boolean)
                    Statistics: Num rows: 143912967 Data size: 4029131264 Basic 
stats: COMPLETE Column stats: COMPLETE
                    Select Operator
                      expressions: ws_sold_date_sk (type: int), ws_sold_time_sk 
(type: int), ws_ship_mode_sk (type: int), ws_warehouse_sk (type: int), 
ws_quantity (type: int), ws_sales_price (type: float), ws_net_paid_inc_tax 
(type: float)
                      outputColumnNames: _col0, _col1, _col2, _col3, _col4, 
_col5, _col6
                      Statistics: Num rows: 143912967 Data size: 4029131264 
Basic stats: COMPLETE Column stats: COMPLETE
                      Map Join Operator
                        condition map:
                             Inner Join 0 to 1
                        keys:
                          0 _col3 (type: int)
                          1 _col0 (type: int)
                        outputColumnNames: _col0, _col1, _col2, _col4, _col5, 
_col6, _col8, _col9, _col10, _col11, _col12, _col13
                        input vertices:
                          1 Map 8
                        Statistics: Num rows: 143912960 Data size: 72244305920 
Basic stats: COMPLETE Column stats: COMPLETE
                        Map Join Operator
                          condition map:
                               Inner Join 0 to 1
                          keys:
                            0 _col1 (type: int)
                            1 _col0 (type: int)
                          outputColumnNames: _col0, _col2, _col4, _col5, _col6, 
_col8, _col9, _col10, _col11, _col12, _col13
                          input vertices:
                            1 Map 9
                          Statistics: Num rows: 71956480 Data size: 35834327040 
Basic stats: COMPLETE Column stats: COMPLETE
                          Reduce Output Operator
                            key expressions: _col2 (type: int)
                            sort order: +
                            Map-reduce partition columns: _col2 (type: int)
                            Statistics: Num rows: 71956480 Data size: 
35834327040 Basic stats: COMPLETE Column stats: COMPLETE
                            value expressions: _col0 (type: int), _col4 (type: 
int), _col5 (type: float), _col6 (type: float), _col8 (type: string), _col9 
(type: int), _col10 (type: string), _col11 (type: string), _col12 (type: 
string), _col13 (type: string)
            Execution mode: vectorized
        Map 8 
            Map Operator Tree:
                TableScan
                  alias: warehouse
                  filterExpr: w_warehouse_sk is not null (type: boolean)
                  Statistics: Num rows: 6 Data size: 6166 Basic stats: COMPLETE 
Column stats: COMPLETE
                  Filter Operator
                    predicate: w_warehouse_sk is not null (type: boolean)
                    Statistics: Num rows: 6 Data size: 2888 Basic stats: 
COMPLETE Column stats: COMPLETE
                    Select Operator
                      expressions: w_warehouse_sk (type: int), w_warehouse_name 
(type: string), w_warehouse_sq_ft (type: int), w_city (type: string), w_county 
(type: string), w_state (type: string), w_country (type: string)
                      outputColumnNames: _col0, _col1, _col2, _col3, _col4, 
_col5, _col6
                      Statistics: Num rows: 6 Data size: 2888 Basic stats: 
COMPLETE Column stats: COMPLETE
                      Reduce Output Operator
                        key expressions: _col0 (type: int)
                        sort order: +
                        Map-reduce partition columns: _col0 (type: int)
                        Statistics: Num rows: 6 Data size: 2888 Basic stats: 
COMPLETE Column stats: COMPLETE
                        value expressions: _col1 (type: string), _col2 (type: 
int), _col3 (type: string), _col4 (type: string), _col5 (type: string), _col6 
(type: string)
            Execution mode: vectorized
        Map 9 
            Map Operator Tree:
                TableScan
                  alias: time_dim
                  filterExpr: (t_time BETWEEN 49530 AND 78330 and t_time_sk is 
not null) (type: boolean)
                  Statistics: Num rows: 86400 Data size: 40694400 Basic stats: 
COMPLETE Column stats: COMPLETE
                  Filter Operator
                    predicate: (t_time BETWEEN 49530 AND 78330 and t_time_sk is 
not null) (type: boolean)
                    Statistics: Num rows: 43200 Data size: 345600 Basic stats: 
COMPLETE Column stats: COMPLETE
                    Select Operator
                      expressions: t_time_sk (type: int)
                      outputColumnNames: _col0
                      Statistics: Num rows: 43200 Data size: 172800 Basic 
stats: COMPLETE Column stats: COMPLETE
                      Reduce Output Operator
                        key expressions: _col0 (type: int)
                        sort order: +
                        Map-reduce partition columns: _col0 (type: int)
                        Statistics: Num rows: 43200 Data size: 172800 Basic 
stats: COMPLETE Column stats: COMPLETE
            Execution mode: vectorized
        Reducer 13 
            Reduce Operator Tree:
              Merge Join Operator
                condition map:
                     Inner Join 0 to 1
                keys:
                  0 _col2 (type: int)
                  1 _col0 (type: int)
                outputColumnNames: _col0, _col4, _col5, _col6, _col8, _col9, 
_col10, _col11, _col12, _col13
                Statistics: Num rows: 9223372036854775807 Data size: 
9223372036854775807 Basic stats: COMPLETE Column stats: COMPLETE
                Select Operator
                  expressions: _col0 (type: int), _col10 (type: string), _col11 
(type: string), _col12 (type: string), _col13 (type: string), _col4 (type: 
int), _col5 (type: float), _col6 (type: float), _col8 (type: string), _col9 
(type: int)
                  outputColumnNames: _col0, _col10, _col11, _col12, _col13, 
_col4, _col5, _col6, _col8, _col9
                  Statistics: Num rows: 9223372036854775807 Data size: 
9223372036854775807 Basic stats: COMPLETE Column stats: COMPLETE
                  Map Join Operator
                    condition map:
                         Inner Join 0 to 1
                    keys:
                      0 _col0 (type: int)
                      1 _col0 (type: int)
                    outputColumnNames: _col2, _col7, _col8, _col9, _col11, 
_col12, _col13, _col14, _col15, _col16
                    input vertices:
                      0 Map 11
                    Statistics: Num rows: 82323356149350400 Data size: 
9223372036854775807 Basic stats: COMPLETE Column stats: COMPLETE
                    Select Operator
                      expressions: _col11 (type: string), _col12 (type: int), 
_col13 (type: string), _col14 (type: string), _col15 (type: string), _col16 
(type: string), 2002 (type: int), CASE WHEN ((_col2 = 1)) THEN ((_col8 * 
UDFToFloat(_col7))) ELSE (0) END (type: float), CASE WHEN ((_col2 = 2)) THEN 
((_col8 * UDFToFloat(_col7))) ELSE (0) END (type: float), CASE WHEN ((_col2 = 
3)) THEN ((_col8 * UDFToFloat(_col7))) ELSE (0) END (type: float), CASE WHEN 
((_col2 = 4)) THEN ((_col8 * UDFToFloat(_col7))) ELSE (0) END (type: float), 
CASE WHEN ((_col2 = 5)) THEN ((_col8 * UDFToFloat(_col7))) ELSE (0) END (type: 
float), CASE WHEN ((_col2 = 6)) THEN ((_col8 * UDFToFloat(_col7))) ELSE (0) END 
(type: float), CASE WHEN ((_col2 = 7)) THEN ((_col8 * UDFToFloat(_col7))) ELSE 
(0) END (type: float), CASE WHEN ((_col2 = 8)) THEN ((_col8 * 
UDFToFloat(_col7))) ELSE (0) END (type: float), CASE WHEN ((_col2 = 9)) THEN 
((_col8 * UDFToFloat(_col7))) ELSE (0) END (type: float), CASE WHEN ((_col2 = 
10)) THEN ((_col8 * UDFToFloat(_col7))) ELSE (0) END (type: float), CASE WHEN 
((_col2 = 11)) THEN ((_col8 * UDFToFloat(_col7))) ELSE (0) END (type: float), 
CASE WHEN ((_col2 = 12)) THEN ((_col8 * UDFToFloat(_col7))) ELSE (0) END (type: 
float), CASE WHEN ((_col2 = 1)) THEN ((_col9 * UDFToFloat(_col7))) ELSE (0) END 
(type: float), CASE WHEN ((_col2 = 2)) THEN ((_col9 * UDFToFloat(_col7))) ELSE 
(0) END (type: float), CASE WHEN ((_col2 = 3)) THEN ((_col9 * 
UDFToFloat(_col7))) ELSE (0) END (type: float), CASE WHEN ((_col2 = 4)) THEN 
((_col9 * UDFToFloat(_col7))) ELSE (0) END (type: float), CASE WHEN ((_col2 = 
5)) THEN ((_col9 * UDFToFloat(_col7))) ELSE (0) END (type: float), CASE WHEN 
((_col2 = 6)) THEN ((_col9 * UDFToFloat(_col7))) ELSE (0) END (type: float), 
CASE WHEN ((_col2 = 7)) THEN ((_col9 * UDFToFloat(_col7))) ELSE (0) END (type: 
float), CASE WHEN ((_col2 = 8)) THEN ((_col9 * UDFToFloat(_col7))) ELSE (0) END 
(type: float), CASE WHEN ((_col2 = 9)) THEN ((_col9 * UDFToFloat(_col7))) ELSE 
(0) END (type: float), CASE WHEN ((_col2 = 10)) THEN ((_col9 * 
UDFToFloat(_col7))) ELSE (0) END (type: float), CASE WHEN ((_col2 = 11)) THEN 
((_col9 * UDFToFloat(_col7))) ELSE (0) END (type: float), CASE WHEN ((_col2 = 
12)) THEN ((_col9 * UDFToFloat(_col7))) ELSE (0) END (type: float)
                      outputColumnNames: _col0, _col1, _col2, _col3, _col4, 
_col5, _col6, _col7, _col8, _col9, _col10, _col11, _col12, _col13, _col14, 
_col15, _col16, _col17, _col18, _col19, _col20, _col21, _col22, _col23, _col24, 
_col25, _col26, _col27, _col28, _col29, _col30
                      Statistics: Num rows: 82323356149350400 Data size: 
9223372036854775807 Basic stats: COMPLETE Column stats: COMPLETE
                      Group By Operator
                        aggregations: sum(_col7), sum(_col8), sum(_col9), 
sum(_col10), sum(_col11), sum(_col12), sum(_col13), sum(_col14), sum(_col15), 
sum(_col16), sum(_col17), sum(_col18), sum(_col19), sum(_col20), sum(_col21), 
sum(_col22), sum(_col23), sum(_col24), sum(_col25), sum(_col26), sum(_col27), 
sum(_col28), sum(_col29), sum(_col30)
                        keys: _col0 (type: string), _col1 (type: int), _col2 
(type: string), _col3 (type: string), _col4 (type: string), _col5 (type: 
string), _col6 (type: int)
                        mode: hash
                        outputColumnNames: _col0, _col1, _col2, _col3, _col4, 
_col5, _col6, _col7, _col8, _col9, _col10, _col11, _col12, _col13, _col14, 
_col15, _col16, _col17, _col18, _col19, _col20, _col21, _col22, _col23, _col24, 
_col25, _col26, _col27, _col28, _col29, _col30
                        Statistics: Num rows: 2147483647 Data size: 
1447403978078 Basic stats: COMPLETE Column stats: COMPLETE
                        Reduce Output Operator
                          key expressions: _col0 (type: string), _col1 (type: 
int), _col2 (type: string), _col3 (type: string), _col4 (type: string), _col5 
(type: string), _col6 (type: int)
                          sort order: +++++++
                          Map-reduce partition columns: _col0 (type: string), 
_col1 (type: int), _col2 (type: string), _col3 (type: string), _col4 (type: 
string), _col5 (type: string), _col6 (type: int)
                          Statistics: Num rows: 2147483647 Data size: 
1447403978078 Basic stats: COMPLETE Column stats: COMPLETE
                          value expressions: _col7 (type: double), _col8 (type: 
double), _col9 (type: double), _col10 (type: double), _col11 (type: double), 
_col12 (type: double), _col13 (type: double), _col14 (type: double), _col15 
(type: double), _col16 (type: double), _col17 (type: double), _col18 (type: 
double), _col19 (type: double), _col20 (type: double), _col21 (type: double), 
_col22 (type: double), _col23 (type: double), _col24 (type: double), _col25 
(type: double), _col26 (type: double), _col27 (type: double), _col28 (type: 
double), _col29 (type: double), _col30 (type: double)
        Reducer 14 
            Reduce Operator Tree:
              Group By Operator
                aggregations: sum(VALUE._col0), sum(VALUE._col1), 
sum(VALUE._col2), sum(VALUE._col3), sum(VALUE._col4), sum(VALUE._col5), 
sum(VALUE._col6), sum(VALUE._col7), sum(VALUE._col8), sum(VALUE._col9), 
sum(VALUE._col10), sum(VALUE._col11), sum(VALUE._col12), sum(VALUE._col13), 
sum(VALUE._col14), sum(VALUE._col15), sum(VALUE._col16), sum(VALUE._col17), 
sum(VALUE._col18), sum(VALUE._col19), sum(VALUE._col20), sum(VALUE._col21), 
sum(VALUE._col22), sum(VALUE._col23)
                keys: KEY._col0 (type: string), KEY._col1 (type: int), 
KEY._col2 (type: string), KEY._col3 (type: string), KEY._col4 (type: string), 
KEY._col5 (type: string), KEY._col6 (type: int)
                mode: mergepartial
                outputColumnNames: _col0, _col1, _col2, _col3, _col4, _col5, 
_col6, _col7, _col8, _col9, _col10, _col11, _col12, _col13, _col14, _col15, 
_col16, _col17, _col18, _col19, _col20, _col21, _col22, _col23, _col24, _col25, 
_col26, _col27, _col28, _col29, _col30
                Select Operator
                  expressions: _col0 (type: string), _col1 (type: int), _col2 
(type: string), _col3 (type: string), _col4 (type: string), _col5 (type: 
string), 'DIAMOND,AIRBORNE' (type: string), _col6 (type: int), _col7 (type: 
double), _col8 (type: double), _col9 (type: double), _col10 (type: double), 
_col11 (type: double), _col12 (type: double), _col13 (type: double), _col14 
(type: double), _col15 (type: double), _col16 (type: double), _col17 (type: 
double), _col18 (type: double), _col19 (type: double), _col20 (type: double), 
_col21 (type: double), _col22 (type: double), _col23 (type: double), _col24 
(type: double), _col25 (type: double), _col26 (type: double), _col27 (type: 
double), _col28 (type: double), _col29 (type: double), _col30 (type: double)
                  outputColumnNames: _col0, _col1, _col2, _col3, _col4, _col5, 
_col6, _col7, _col8, _col9, _col10, _col11, _col12, _col13, _col14, _col15, 
_col16, _col17, _col18, _col19, _col20, _col21, _col22, _col23, _col24, _col25, 
_col26, _col27, _col28, _col29, _col30, _col31
                  Select Operator
                    expressions: _col0 (type: string), _col1 (type: int), _col2 
(type: string), _col3 (type: string), _col4 (type: string), _col5 (type: 
string), _col6 (type: string), _col7 (type: int), _col8 (type: double), _col9 
(type: double), _col10 (type: double), _col11 (type: double), _col12 (type: 
double), _col13 (type: double), _col14 (type: double), _col15 (type: double), 
_col16 (type: double), _col17 (type: double), _col18 (type: double), _col19 
(type: double), (_col8 / UDFToDouble(_col1)) (type: double), (_col9 / 
UDFToDouble(_col1)) (type: double), (_col10 / UDFToDouble(_col1)) (type: 
double), (_col11 / UDFToDouble(_col1)) (type: double), (_col12 / 
UDFToDouble(_col1)) (type: double), (_col13 / UDFToDouble(_col1)) (type: 
double), (_col14 / UDFToDouble(_col1)) (type: double), (_col15 / 
UDFToDouble(_col1)) (type: double), (_col16 / UDFToDouble(_col1)) (type: 
double), (_col17 / UDFToDouble(_col1)) (type: double), (_col18 / 
UDFToDouble(_col1)) (type: double), (_col19 / UDFToDouble(_col1)) (type: 
double), _col20 (type: double), _col21 (type: double), _col22 (type: double), 
_col23 (type: double), _col24 (type: double), _col25 (type: double), _col26 
(type: double), _col27 (type: double), _col28 (type: double), _col29 (type: 
double), _col30 (type: double), _col31 (type: double)
                    outputColumnNames: _col0, _col1, _col2, _col3, _col4, 
_col5, _col6, _col7, _col8, _col9, _col10, _col11, _col12, _col13, _col14, 
_col15, _col16, _col17, _col18, _col19, _col20, _col21, _col22, _col23, _col24, 
_col25, _col26, _col27, _col28, _col29, _col30, _col31, _col32, _col33, _col34, 
_col35, _col36, _col37, _col38, _col39, _col40, _col41, _col42, _col43
                    Group By Operator
                      aggregations: sum(_col8), sum(_col9), sum(_col10), 
sum(_col11), sum(_col12), sum(_col13), sum(_col14), sum(_col15), sum(_col16), 
sum(_col17), sum(_col18), sum(_col19), sum(_col20), sum(_col21), sum(_col22), 
sum(_col23), sum(_col24), sum(_col25), sum(_col26), sum(_col27), sum(_col28), 
sum(_col29), sum(_col30), sum(_col31), sum(_col32), sum(_col33), sum(_col34), 
sum(_col35), sum(_col36), sum(_col37), sum(_col38), sum(_col39), sum(_col40), 
sum(_col41), sum(_col42), sum(_col43)
                      keys: _col0 (type: string), _col1 (type: int), _col2 
(type: string), _col3 (type: string), _col4 (type: string), _col5 (type: 
string), _col6 (type: string), _col7 (type: int)
                      mode: hash
                      outputColumnNames: _col0, _col1, _col2, _col3, _col4, 
_col5, _col6, _col7, _col8, _col9, _col10, _col11, _col12, _col13, _col14, 
_col15, _col16, _col17, _col18, _col19, _col20, _col21, _col22, _col23, _col24, 
_col25, _col26, _col27, _col28, _col29, _col30, _col31, _col32, _col33, _col34, 
_col35, _col36, _col37, _col38, _col39, _col40, _col41, _col42, _col43
                      Reduce Output Operator
                        key expressions: _col0 (type: string), _col1 (type: 
int), _col2 (type: string), _col3 (type: string), _col4 (type: string), _col5 
(type: string), _col6 (type: string), _col7 (type: int)
                        sort order: ++++++++
                        Map-reduce partition columns: _col0 (type: string), 
_col1 (type: int), _col2 (type: string), _col3 (type: string), _col4 (type: 
string), _col5 (type: string), _col6 (type: string), _col7 (type: int)
                        value expressions: _col8 (type: double), _col9 (type: 
double), _col10 (type: double), _col11 (type: double), _col12 (type: double), 
_col13 (type: double), _col14 (type: double), _col15 (type: double), _col16 
(type: double), _col17 (type: double), _col18 (type: double), _col19 (type: 
double), _col20 (type: double), _col21 (type: double), _col22 (type: double), 
_col23 (type: double), _col24 (type: double), _col25 (type: double), _col26 
(type: double), _col27 (type: double), _col28 (type: double), _col29 (type: 
double), _col30 (type: double), _col31 (type: double), _col32 (type: double), 
_col33 (type: double), _col34 (type: double), _col35 (type: double), _col36 
(type: double), _col37 (type: double), _col38 (type: double), _col39 (type: 
double), _col40 (type: double), _col41 (type: double), _col42 (type: double), 
_col43 (type: double)
        Reducer 3 
            Reduce Operator Tree:
              Merge Join Operator
                condition map:
                     Inner Join 0 to 1
                keys:
                  0 _col2 (type: int)
                  1 _col0 (type: int)
                outputColumnNames: _col0, _col4, _col5, _col6, _col8, _col9, 
_col10, _col11, _col12, _col13
                Statistics: Num rows: 9223372036854775807 Data size: 
9223372036854775807 Basic stats: COMPLETE Column stats: COMPLETE
                Select Operator
                  expressions: _col0 (type: int), _col10 (type: string), _col11 
(type: string), _col12 (type: string), _col13 (type: string), _col4 (type: 
int), _col5 (type: float), _col6 (type: float), _col8 (type: string), _col9 
(type: int)
                  outputColumnNames: _col0, _col10, _col11, _col12, _col13, 
_col4, _col5, _col6, _col8, _col9
                  Statistics: Num rows: 9223372036854775807 Data size: 
9223372036854775807 Basic stats: COMPLETE Column stats: COMPLETE
                  Map Join Operator
                    condition map:
                         Inner Join 0 to 1
                    keys:
                      0 _col0 (type: int)
                      1 _col0 (type: int)
                    outputColumnNames: _col2, _col7, _col8, _col9, _col11, 
_col12, _col13, _col14, _col15, _col16
                    input vertices:
                      0 Map 1
                    Statistics: Num rows: 82323356149350400 Data size: 
9223372036854775807 Basic stats: COMPLETE Column stats: COMPLETE
                    Select Operator
                      expressions: _col11 (type: string), _col12 (type: int), 
_col13 (type: string), _col14 (type: string), _col15 (type: string), _col16 
(type: string), 2002 (type: int), CASE WHEN ((_col2 = 1)) THEN ((_col8 * 
UDFToFloat(_col7))) ELSE (0) END (type: float), CASE WHEN ((_col2 = 2)) THEN 
((_col8 * UDFToFloat(_col7))) ELSE (0) END (type: float), CASE WHEN ((_col2 = 
3)) THEN ((_col8 * UDFToFloat(_col7))) ELSE (0) END (type: float), CASE WHEN 
((_col2 = 4)) THEN ((_col8 * UDFToFloat(_col7))) ELSE (0) END (type: float), 
CASE WHEN ((_col2 = 5)) THEN ((_col8 * UDFToFloat(_col7))) ELSE (0) END (type: 
float), CASE WHEN ((_col2 = 6)) THEN ((_col8 * UDFToFloat(_col7))) ELSE (0) END 
(type: float), CASE WHEN ((_col2 = 7)) THEN ((_col8 * UDFToFloat(_col7))) ELSE 
(0) END (type: float), CASE WHEN ((_col2 = 8)) THEN ((_col8 * 
UDFToFloat(_col7))) ELSE (0) END (type: float), CASE WHEN ((_col2 = 9)) THEN 
((_col8 * UDFToFloat(_col7))) ELSE (0) END (type: float), CASE WHEN ((_col2 = 
10)) THEN ((_col8 * UDFToFloat(_col7))) ELSE (0) END (type: float), CASE WHEN 
((_col2 = 11)) THEN ((_col8 * UDFToFloat(_col7))) ELSE (0) END (type: float), 
CASE WHEN ((_col2 = 12)) THEN ((_col8 * UDFToFloat(_col7))) ELSE (0) END (type: 
float), CASE WHEN ((_col2 = 1)) THEN ((_col9 * UDFToFloat(_col7))) ELSE (0) END 
(type: float), CASE WHEN ((_col2 = 2)) THEN ((_col9 * UDFToFloat(_col7))) ELSE 
(0) END (type: float), CASE WHEN ((_col2 = 3)) THEN ((_col9 * 
UDFToFloat(_col7))) ELSE (0) END (type: float), CASE WHEN ((_col2 = 4)) THEN 
((_col9 * UDFToFloat(_col7))) ELSE (0) END (type: float), CASE WHEN ((_col2 = 
5)) THEN ((_col9 * UDFToFloat(_col7))) ELSE (0) END (type: float), CASE WHEN 
((_col2 = 6)) THEN ((_col9 * UDFToFloat(_col7))) ELSE (0) END (type: float), 
CASE WHEN ((_col2 = 7)) THEN ((_col9 * UDFToFloat(_col7))) ELSE (0) END (type: 
float), CASE WHEN ((_col2 = 8)) THEN ((_col9 * UDFToFloat(_col7))) ELSE (0) END 
(type: float), CASE WHEN ((_col2 = 9)) THEN ((_col9 * UDFToFloat(_col7))) ELSE 
(0) END (type: float), CASE WHEN ((_col2 = 10)) THEN ((_col9 * 
UDFToFloat(_col7))) ELSE (0) END (type: float), CASE WHEN ((_col2 = 11)) THEN 
((_col9 * UDFToFloat(_col7))) ELSE (0) END (type: float), CASE WHEN ((_col2 = 
12)) THEN ((_col9 * UDFToFloat(_col7))) ELSE (0) END (type: float)
                      outputColumnNames: _col0, _col1, _col2, _col3, _col4, 
_col5, _col6, _col7, _col8, _col9, _col10, _col11, _col12, _col13, _col14, 
_col15, _col16, _col17, _col18, _col19, _col20, _col21, _col22, _col23, _col24, 
_col25, _col26, _col27, _col28, _col29, _col30
                      Statistics: Num rows: 82323356149350400 Data size: 
9223372036854775807 Basic stats: COMPLETE Column stats: COMPLETE
                      Group By Operator
                        aggregations: sum(_col7), sum(_col8), sum(_col9), 
sum(_col10), sum(_col11), sum(_col12), sum(_col13), sum(_col14), sum(_col15), 
sum(_col16), sum(_col17), sum(_col18), sum(_col19), sum(_col20), sum(_col21), 
sum(_col22), sum(_col23), sum(_col24), sum(_col25), sum(_col26), sum(_col27), 
sum(_col28), sum(_col29), sum(_col30)
                        keys: _col0 (type: string), _col1 (type: int), _col2 
(type: string), _col3 (type: string), _col4 (type: string), _col5 (type: 
string), _col6 (type: int)
                        mode: hash
                        outputColumnNames: _col0, _col1, _col2, _col3, _col4, 
_col5, _col6, _col7, _col8, _col9, _col10, _col11, _col12, _col13, _col14, 
_col15, _col16, _col17, _col18, _col19, _col20, _col21, _col22, _col23, _col24, 
_col25, _col26, _col27, _col28, _col29, _col30
                        Statistics: Num rows: 2147483647 Data size: 
1447403978078 Basic stats: COMPLETE Column stats: COMPLETE
                        Reduce Output Operator
                          key expressions: _col0 (type: string), _col1 (type: 
int), _col2 (type: string), _col3 (type: string), _col4 (type: string), _col5 
(type: string), _col6 (type: int)
                          sort order: +++++++
                          Map-reduce partition columns: _col0 (type: string), 
_col1 (type: int), _col2 (type: string), _col3 (type: string), _col4 (type: 
string), _col5 (type: string), _col6 (type: int)
                          Statistics: Num rows: 2147483647 Data size: 
1447403978078 Basic stats: COMPLETE Column stats: COMPLETE
                          value expressions: _col7 (type: double), _col8 (type: 
double), _col9 (type: double), _col10 (type: double), _col11 (type: double), 
_col12 (type: double), _col13 (type: double), _col14 (type: double), _col15 
(type: double), _col16 (type: double), _col17 (type: double), _col18 (type: 
double), _col19 (type: double), _col20 (type: double), _col21 (type: double), 
_col22 (type: double), _col23 (type: double), _col24 (type: double), _col25 
(type: double), _col26 (type: double), _col27 (type: double), _col28 (type: 
double), _col29 (type: double), _col30 (type: double)
        Reducer 4 
            Reduce Operator Tree:
              Group By Operator
                aggregations: sum(VALUE._col0), sum(VALUE._col1), 
sum(VALUE._col2), sum(VALUE._col3), sum(VALUE._col4), sum(VALUE._col5), 
sum(VALUE._col6), sum(VALUE._col7), sum(VALUE._col8), sum(VALUE._col9), 
sum(VALUE._col10), sum(VALUE._col11), sum(VALUE._col12), sum(VALUE._col13), 
sum(VALUE._col14), sum(VALUE._col15), sum(VALUE._col16), sum(VALUE._col17), 
sum(VALUE._col18), sum(VALUE._col19), sum(VALUE._col20), sum(VALUE._col21), 
sum(VALUE._col22), sum(VALUE._col23)
                keys: KEY._col0 (type: string), KEY._col1 (type: int), 
KEY._col2 (type: string), KEY._col3 (type: string), KEY._col4 (type: string), 
KEY._col5 (type: string), KEY._col6 (type: int)
                mode: mergepartial
                outputColumnNames: _col0, _col1, _col2, _col3, _col4, _col5, 
_col6, _col7, _col8, _col9, _col10, _col11, _col12, _col13, _col14, _col15, 
_col16, _col17, _col18, _col19, _col20, _col21, _col22, _col23, _col24, _col25, 
_col26, _col27, _col28, _col29, _col30
                Select Operator
                  expressions: _col0 (type: string), _col1 (type: int), _col2 
(type: string), _col3 (type: string), _col4 (type: string), _col5 (type: 
string), 'DIAMOND,AIRBORNE' (type: string), _col6 (type: int), _col7 (type: 
double), _col8 (type: double), _col9 (type: double), _col10 (type: double), 
_col11 (type: double), _col12 (type: double), _col13 (type: double), _col14 
(type: double), _col15 (type: double), _col16 (type: double), _col17 (type: 
double), _col18 (type: double), _col19 (type: double), _col20 (type: double), 
_col21 (type: double), _col22 (type: double), _col23 (type: double), _col24 
(type: double), _col25 (type: double), _col26 (type: double), _col27 (type: 
double), _col28 (type: double), _col29 (type: double), _col30 (type: double)
                  outputColumnNames: _col0, _col1, _col2, _col3, _col4, _col5, 
_col6, _col7, _col8, _col9, _col10, _col11, _col12, _col13, _col14, _col15, 
_col16, _col17, _col18, _col19, _col20, _col21, _col22, _col23, _col24, _col25, 
_col26, _col27, _col28, _col29, _col30, _col31
                  Select Operator
                    expressions: _col0 (type: string), _col1 (type: int), _col2 
(type: string), _col3 (type: string), _col4 (type: string), _col5 (type: 
string), _col6 (type: string), _col7 (type: int), _col8 (type: double), _col9 
(type: double), _col10 (type: double), _col11 (type: double), _col12 (type: 
double), _col13 (type: double), _col14 (type: double), _col15 (type: double), 
_col16 (type: double), _col17 (type: double), _col18 (type: double), _col19 
(type: double), (_col8 / UDFToDouble(_col1)) (type: double), (_col9 / 
UDFToDouble(_col1)) (type: double), (_col10 / UDFToDouble(_col1)) (type: 
double), (_col11 / UDFToDouble(_col1)) (type: double), (_col12 / 
UDFToDouble(_col1)) (type: double), (_col13 / UDFToDouble(_col1)) (type: 
double), (_col14 / UDFToDouble(_col1)) (type: double), (_col15 / 
UDFToDouble(_col1)) (type: double), (_col16 / UDFToDouble(_col1)) (type: 
double), (_col17 / UDFToDouble(_col1)) (type: double), (_col18 / 
UDFToDouble(_col1)) (type: double), (_col19 / UDFToDouble(_col1)) (type: 
double), _col20 (type: double), _col21 (type: double), _col22 (type: double), 
_col23 (type: double), _col24 (type: double), _col25 (type: double), _col26 
(type: double), _col27 (type: double), _col28 (type: double), _col29 (type: 
double), _col30 (type: double), _col31 (type: double)
                    outputColumnNames: _col0, _col1, _col2, _col3, _col4, 
_col5, _col6, _col7, _col8, _col9, _col10, _col11, _col12, _col13, _col14, 
_col15, _col16, _col17, _col18, _col19, _col20, _col21, _col22, _col23, _col24, 
_col25, _col26, _col27, _col28, _col29, _col30, _col31, _col32, _col33, _col34, 
_col35, _col36, _col37, _col38, _col39, _col40, _col41, _col42, _col43
                    Group By Operator
                      aggregations: sum(_col8), sum(_col9), sum(_col10), 
sum(_col11), sum(_col12), sum(_col13), sum(_col14), sum(_col15), sum(_col16), 
sum(_col17), sum(_col18), sum(_col19), sum(_col20), sum(_col21), sum(_col22), 
sum(_col23), sum(_col24), sum(_col25), sum(_col26), sum(_col27), sum(_col28), 
sum(_col29), sum(_col30), sum(_col31), sum(_col32), sum(_col33), sum(_col34), 
sum(_col35), sum(_col36), sum(_col37), sum(_col38), sum(_col39), sum(_col40), 
sum(_col41), sum(_col42), sum(_col43)
                      keys: _col0 (type: string), _col1 (type: int), _col2 
(type: string), _col3 (type: string), _col4 (type: string), _col5 (type: 
string), _col6 (type: string), _col7 (type: int)
                      mode: hash
                      outputColumnNames: _col0, _col1, _col2, _col3, _col4, 
_col5, _col6, _col7, _col8, _col9, _col10, _col11, _col12, _col13, _col14, 
_col15, _col16, _col17, _col18, _col19, _col20, _col21, _col22, _col23, _col24, 
_col25, _col26, _col27, _col28, _col29, _col30, _col31, _col32, _col33, _col34, 
_col35, _col36, _col37, _col38, _col39, _col40, _col41, _col42, _col43
                      Reduce Output Operator
                        key expressions: _col0 (type: string), _col1 (type: 
int), _col2 (type: string), _col3 (type: string), _col4 (type: string), _col5 
(type: string), _col6 (type: string), _col7 (type: int)
                        sort order: ++++++++
                        Map-reduce partition columns: _col0 (type: string), 
_col1 (type: int), _col2 (type: string), _col3 (type: string), _col4 (type: 
string), _col5 (type: string), _col6 (type: string), _col7 (type: int)
                        value expressions: _col8 (type: double), _col9 (type: 
double), _col10 (type: double), _col11 (type: double), _col12 (type: double), 
_col13 (type: double), _col14 (type: double), _col15 (type: double), _col16 
(type: double), _col17 (type: double), _col18 (type: double), _col19 (type: 
double), _col20 (type: double), _col21 (type: double), _col22 (type: double), 
_col23 (type: double), _col24 (type: double), _col25 (type: double), _col26 
(type: double), _col27 (type: double), _col28 (type: double), _col29 (type: 
double), _col30 (type: double), _col31 (type: double), _col32 (type: double), 
_col33 (type: double), _col34 (type: double), _col35 (type: double), _col36 
(type: double), _col37 (type: double), _col38 (type: double), _col39 (type: 
double), _col40 (type: double), _col41 (type: double), _col42 (type: double), 
_col43 (type: double)
        Reducer 6 
            Reduce Operator Tree:
              Group By Operator
                aggregations: sum(VALUE._col0), sum(VALUE._col1), 
sum(VALUE._col2), sum(VALUE._col3), sum(VALUE._col4), sum(VALUE._col5), 
sum(VALUE._col6), sum(VALUE._col7), sum(VALUE._col8), sum(VALUE._col9), 
sum(VALUE._col10), sum(VALUE._col11), sum(VALUE._col12), sum(VALUE._col13), 
sum(VALUE._col14), sum(VALUE._col15), sum(VALUE._col16), sum(VALUE._col17), 
sum(VALUE._col18), sum(VALUE._col19), sum(VALUE._col20), sum(VALUE._col21), 
sum(VALUE._col22), sum(VALUE._col23), sum(VALUE._col24), sum(VALUE._col25), 
sum(VALUE._col26), sum(VALUE._col27), sum(VALUE._col28), sum(VALUE._col29), 
sum(VALUE._col30), sum(VALUE._col31), sum(VALUE._col32), sum(VALUE._col33), 
sum(VALUE._col34), sum(VALUE._col35)
                keys: KEY._col0 (type: string), KEY._col1 (type: int), 
KEY._col2 (type: string), KEY._col3 (type: string), KEY._col4 (type: string), 
KEY._col5 (type: string), KEY._col6 (type: string), KEY._col7 (type: int)
                mode: mergepartial
                outputColumnNames: _col0, _col1, _col2, _col3, _col4, _col5, 
_col6, _col7, _col8, _col9, _col10, _col11, _col12, _col13, _col14, _col15, 
_col16, _col17, _col18, _col19, _col20, _col21, _col22, _col23, _col24, _col25, 
_col26, _col27, _col28, _col29, _col30, _col31, _col32, _col33, _col34, _col35, 
_col36, _col37, _col38, _col39, _col40, _col41, _col42, _col43
                Statistics: Num rows: 1 Data size: 288 Basic stats: COMPLETE 
Column stats: COMPLETE
                Reduce Output Operator
                  key expressions: _col0 (type: string)
                  sort order: +
                  Statistics: Num rows: 1 Data size: 288 Basic stats: COMPLETE 
Column stats: COMPLETE
                  TopN Hash Memory Usage: 0.04
                  value expressions: _col1 (type: int), _col2 (type: string), 
_col3 (type: string), _col4 (type: string), _col5 (type: string), _col6 (type: 
string), _col7 (type: int), _col8 (type: double), _col9 (type: double), _col10 
(type: double), _col11 (type: double), _col12 (type: double), _col13 (type: 
double), _col14 (type: double), _col15 (type: double), _col16 (type: double), 
_col17 (type: double), _col18 (type: double), _col19 (type: double), _col20 
(type: double), _col21 (type: double), _col22 (type: double), _col23 (type: 
double), _col24 (type: double), _col25 (type: double), _col26 (type: double), 
_col27 (type: double), _col28 (type: double), _col29 (type: double), _col30 
(type: double), _col31 (type: double), _col32 (type: double), _col33 (type: 
double), _col34 (type: double), _col35 (type: double), _col36 (type: double), 
_col37 (type: double), _col38 (type: double), _col39 (type: double), _col40 
(type: double), _col41 (type: double), _col42 (type: double), _col43 (type: 
double)
        Reducer 7 
            Reduce Operator Tree:
              Select Operator
                expressions: KEY.reducesinkkey0 (type: string), VALUE._col0 
(type: int), VALUE._col1 (type: string), VALUE._col2 (type: string), 
VALUE._col3 (type: string), VALUE._col4 (type: string), VALUE._col5 (type: 
string), VALUE._col6 (type: int), VALUE._col7 (type: double), VALUE._col8 
(type: double), VALUE._col9 (type: double), VALUE._col10 (type: double), 
VALUE._col11 (type: double), VALUE._col12 (type: double), VALUE._col13 (type: 
double), VALUE._col14 (type: double), VALUE._col15 (type: double), VALUE._col16 
(type: double), VALUE._col17 (type: double), VALUE._col18 (type: double), 
VALUE._col19 (type: double), VALUE._col20 (type: double), VALUE._col21 (type: 
double), VALUE._col22 (type: double), VALUE._col23 (type: double), VALUE._col24 
(type: double), VALUE._col25 (type: double), VALUE._col26 (type: double), 
VALUE._col27 (type: double), VALUE._col28 (type: double), VALUE._col29 (type: 
double), VALUE._col30 (type: double), VALUE._col31 (type: double), VALUE._col32 
(type: double), VALUE._col33 (type: double), VALUE._col34 (type: double), 
VALUE._col35 (type: double), VALUE._col36 (type: double), VALUE._col37 (type: 
double), VALUE._col38 (type: double), VALUE._col39 (type: double), VALUE._col40 
(type: double), VALUE._col41 (type: double), VALUE._col42 (type: double)
                outputColumnNames: _col0, _col1, _col2, _col3, _col4, _col5, 
_col6, _col7, _col8, _col9, _col10, _col11, _col12, _col13, _col14, _col15, 
_col16, _col17, _col18, _col19, _col20, _col21, _col22, _col23, _col24, _col25, 
_col26, _col27, _col28, _col29, _col30, _col31, _col32, _col33, _col34, _col35, 
_col36, _col37, _col38, _col39, _col40, _col41, _col42, _col43
                Statistics: Num rows: 1 Data size: 288 Basic stats: COMPLETE 
Column stats: COMPLETE
                Limit
                  Number of rows: 100
                  Statistics: Num rows: 1 Data size: 288 Basic stats: COMPLETE 
Column stats: COMPLETE
                  File Output Operator
                    compressed: false
                    Statistics: Num rows: 1 Data size: 288 Basic stats: 
COMPLETE Column stats: COMPLETE
                    table:
                        input format: org.apache.hadoop.mapred.TextInputFormat
                        output format: 
org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat
                        serde: 
org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe
        Union 5 
            Vertex: Union 5

  Stage: Stage-0
    Fetch Operator
      limit: 100
      Processor Tree:
        ListSink

{code}



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

Reply via email to